English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 46-54 DOI: 10.7536/PC190528 前一篇   后一篇

• •

半导体光催化分解水的析氢效率研究

郭丽君1,2, 李瑞1, 刘建新1, 席庆1, 樊彩梅1,**()   

  1. 1. 太原理工大学化学化工学院 太原 030024
    2. 太原工业学院化学与化工系 太原 030008
  • 收稿日期:2019-05-29 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 樊彩梅
  • 基金资助:
    国家自然科学基金项目(21808151); 国家自然科学基金项目(21676178); 山西省高等学校科技创新项目(2019L0138); 山西省自然科学基金项目资助(201901D211100)

Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting

Lijun Guo1,2, Rui Li1, Jianxin Liu1, Qing Xi1, Caimei Fan1,**()   

  1. 1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024,China
    2. Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
  • Received:2019-05-29 Online:2020-01-15 Published:2019-12-11
  • Contact: Caimei Fan
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21808151); National Natural Science Foundation of China(21676178); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(STIP)(2019L0138); Natural Science Foundation of Shanxi Province,China(201901D211100)

光催化水制氢是太阳能向氢能转化的有效途径,在清洁能源利用方面具有较大的潜力。光催化产氢过程主要包括光生电子和空穴对的产生、迁移以及在表面活性位点的氧化还原反应,在此过程中由于电子-空穴对的复合以及催化剂的结构和表面活性位点的局限,导致电子和空穴不能完全迁移到催化剂表面并参与氧化还原反应,从而降低了析氢效率。因此本文以抑制光生电子-空穴对复合及增加表面活性位点为目的,从调控催化剂微观特性和外在属性两方面入手,分析总结了目前常见的半导体催化剂粒径、形貌、晶面、表面活性位点调控手段以及异质结构建和助催化剂负载的方法,探究了上述因素对催化剂析氢效率的影响途径和方式,从中归纳出提升析氢效率的办法。最后对光催化制氢的未来研究方向进行了展望,希望以此为光催化产氢效率的提高提供借鉴。

Photocatalytic hydrogen generation, with great potential in clean energy, is an effective way to convert solar energy into hydrogen energy. The process of photocatalytic hydrogen generation mainly includes the generation and migration of electron-hole pairs as well as the REDOX reaction at the surface-active sites. In this process, due to the combination of electron-hole pairs and the limitation of surface-active sites, the electrons and holes cannot completely migrate on the catalyst surface and participate in the REDOX reaction, so hydrogen evolution efficiency is reduced. Thus for the purpose of restraining recombination of photogenerated electronic-hole and increasing surface active sites, from the two aspects of regulating the internal characteristics and external catalyst properties, the current common manipulation measures on catalyst particle size, morphology, crystal and surface active sites are analyzed, and the ways of constructing heterogeneous structure are discussed. The research results by the means of loading cocatalyst in recent years are summarized. By means of exploring how these factors influence the efficiency of catalyst activity of hydrogen evolution, ways of improving the efficiency of the hydrogen evolution method are summarized. Finally, the future research direction of photocatalytic hydrogen production is prospected, hoping to provide reference for improving the efficiency of photocatalytic hydrogen production.

()
图1 光催化分解水过程
Fig. 1 The processes of photocatalytic water splitting
图2 (a)MoS2/g-CN层状结构[5],(b)Rh/3DGR三维拓扑结构[6]
Fig. 2 (a) Structural model of the resultant MoS2/g-CN layered junctions[5], (b) 3D topology of Rh/3DGR[6]
图3 (a)不同TiO2晶面的暴露[13],(b)不同晶面上分别负载产氢产氧催化剂[14]
Fig. 3 (a) Different TiO2 crystal facets exposed[13];(b)simultaneous photo-deposition of metal and metal oxides on the {010} and {110} facets[14]
图4 MoS2@Cu2O催化剂SEM图[18]
Fig. 4 SEM of MoS2@Cu2O[18]
图5 MoS2超薄纳米片中的无序结构[19]
Fig. 5 The disordered structure in oxygen-incorporated MoS2 ultrathin nanosheets[19]
图6 表面无序的钛酸盐-锐钛矿异质结催化剂的制备[23]
Fig. 6 The preparation of the titanate-anatase heterostructure with surface disordered shell[23]
图7 ZnMoS4/ZnO/CuS多级异质结结构[36]
Fig. 7 Multiple heterojunctions of the ZnMoS4/ZnO/CuS[36]
图8 (a) 1D CdS@MoS2的TEM图,(b) 不同试样产氢活性对比[42]
Fig. 8 (a) TEM of 1D CdS@MoS2,(b) comparison of the photocatalytic H2 production activity of different samples for 4 h[42]
图9 (a)CeO2- x S x @CdS的TEM图,(b)CeO2、CeO2- x S x , CdS和CeO2- x S x @CdS产氢对比[43]
Fig. 9 (a) TEM of CeO2- x S x @CdS, (b) comparison of the H2 evolution rate of CeO2, CeO2- x S x , CdS and CeO2- x S x @CdS photocatalysts[43]
图10 SrTiO3@Mo2C试样的横断面[44]
Fig. 10 Cross-section of SrTiO3@Mo2C specimen[44]
表1 不同策略提高光催化产氢活性的近期研究
Table 1 Examples of enhancing photocatalytic water splitting activity by different strategies
Cocatalyst1 Cocatalyst2 Photocatalyst Hydrogen production rate Quantum efficiency Reason for the increased
activity
ref
Pt Ti3C2 g-C3N4 5.1 mmol·h-1·g-1 heterojunction 60
Pt CdS 3DOM-SrTiO3 57.9 mmol·h-1·g-1 3D core-shell 61
Pt NiS La5Ti2Cu(S1- x Se x )5O7 1.8%(420 nm) Pt’s low overpotential 50
PtPd CdS 1837 μmol·h-1 alloy 62
Pd TiO2 Pd{111}facet 63
Pd TiO2 ZSM-5 1148 μmol·g-1·h-1 Pd as active sites 52
PdPt Ta2O5 21 529.52 μmol·g-1·h-1 16.5%(254 nm) alloy 64
Pd Ag g-C3N4 1250 μmol·h-1·g-1 metallic character of Pd and Ag 65
Au TiO2-g-C3N4 350 μmol·h-1·g-1 heterojunction 66
Au CdS 6385 μmol·h-1·g-1 Au’s low overpotential 51
Au CdS/ZnS-RGO 9.96 mmol·h-1·g-1 heterojunction 67
MoS2 CdS 381.6 μmol·h-1 rich defects of MoS2-NS 68
MoS2 CdS 28.5%(420 nm) core-shell 42
MoS2 UiO-66/CdS 650 μmol·h-1 surface modification 69
MoOx CdS NWs 573.6 μmol·h-1 13.4%(420 nm) MoO x supersmall clusters 59
MoS2 GO TiO2 165.3 μmol·h-1 lamellar structure 70
AuPt AuPtAg TiO2 138.5 μL·h-1 alloy 66
NiCu TiO2 6.04 μL·h-1·cm-2 alloy 71
NiMo MIL-101 740.2 μmol·h-1 75.7%(520 nm) alloy 48
Ni MOF-5 30.22 mmol·h-1·g-1 16.7%(430 nm) small size Ni{111}facet 55
Co GO 445.65 μmol·h-1 17.4%(520 nm) Co{101}facet 72
CoO CdS 3.5 mmol·g-1·h-1 core-shell 56
Co3O4 TiO2(B) 6359 μmol·h-1·g-1 10.9% heterojunction 73
Co2P RGO 1068 μmol·h-1 33.3%(520 nm) surface defect of Co 57
TiO2(B) anatase 29 mmol·h-1·g-1 heterojunction 74
Bi2S3 MoS2QDs 17.7 mmol·h-1·g-1 active sites S exposed 75
[1]
Guo Y Q , Dai B H , Peng J , Wu C Z , Xie Y . J. Am. Chem. Soc., 2019,141(2):723. https://www.ncbi.nlm.nih.gov/pubmed/30481464

doi: 10.1021/jacs.8b09821     URL     pmid: 30481464
[2]
Bai S , Jiang W Y , Li Z Q , Xiong Y J . ChemNanoMat, 2015,1(4):223.
[3]
Zhu E B , Wang S Y , Yan X C , Sobani M , Ruan L Y , Wang C , Liu Y , Duan X F , Heinz H , Huang Y . J. Am. Chem. Soc., 2018,141(4):1498. https://www.ncbi.nlm.nih.gov/pubmed/30475606

doi: 10.1021/jacs.8b08023     URL     pmid: 30475606
[4]
Liu Z M , Liu G L , Hong X L . Acta Phys.-Chim. Sin., 2019,35:215.
[5]
Hou Y , Laursen A B , Zhang J , Zhang G , Zhu Y , Wang X , Dahl S , Chorkendorff I . Angew. Chem. Int. Ed., 2013,52(13):3621. https://www.ncbi.nlm.nih.gov/pubmed/23427144

doi: 10.1002/anie.201210294     URL     pmid: 23427144
[6]
Zhen W L , Gao H B , Lv G X , Chinese J . Inorg. Chem., 2018,1(34):20.
[7]
Ong W J , Tan L L , Chai S P , Yong S T , Mohamed A R . Nanoscale, 2014,6(4):1946. https://www.ncbi.nlm.nih.gov/pubmed/24384624

doi: 10.1039/c3nr04655a     URL     pmid: 24384624
[8]
Yang H G , Sun C H , Qiao S Z , Zou J , Liu G , Smith S C , Cheng H M , Lu G Q . Nature, 2008,453(7195):638. https://doi.org/10.1038/nature06964

doi: 10.1038/nature06964     URL     pmid: 18509440
[9]
Yu J G , Dai G P , Xiang Q J , Jaroniec M . J. Mater. Chem., 2011,21(4):1049. http://xlink.rsc.org/?DOI=C0JM02217A

doi: 10.1039/C0JM02217A     URL    
[10]
Gao K . Phys. Status Solidi B, 2007,244(7):2597.
[11]
Marković N M , Grgur B N , Ross P N . J. Phy. Chem. B, 1997,101(27):5405.
[12]
Popczun E J , Roske C W , Read C G , Crompton J C , McEnaney J M , Callejas J F , Lewis N S , Schaak R E . J. Mater. Chem. A, 2015,3(10):5420.
[13]
Liu L C , Liu Z , Liu A N , Gu X R , Ge C Y , Gao F , Dong L . ChemSusChem, 2014,7(2):618. https://www.ncbi.nlm.nih.gov/pubmed/24323576

doi: 10.1002/cssc.201300941     URL     pmid: 24323576
[14]
Li R G , Zhang F X , Wang D , Yang J X , Li M X , Zhu J , Zhou X , Han H X , Li C . Nat. Commun., 2013,4:1432. https://www.ncbi.nlm.nih.gov/pubmed/23385577

doi: 10.1038/ncomms2401     URL     pmid: 23385577
[15]
Jaramillo T F , Jorgensen K P , Bonde J , Nielsen J H , Horch S , Chorkendorff I . Science, 2007,317(5834):100. https://www.ncbi.nlm.nih.gov/pubmed/17615351

doi: 10.1126/science.1141483     URL     pmid: 17615351
[16]
Kong D , Wang H , Cha J J , Pasta M , Koski K J , Yao J , Cui Y . Nano Lett., 2013,13(3):1341. https://www.ncbi.nlm.nih.gov/pubmed/23387444

doi: 10.1021/nl400258t     URL     pmid: 23387444
[17]
Yin Y , Han J C , Zhang Y M , Zhang X H , Xu P , Yuan Q , Samad L , Wang X J , Wang Y , Zhang Z H , Zhang P , Cao X Z , Song B , Jin S . J. Am. Chem. Soc., 2016,138(25):7965. https://www.ncbi.nlm.nih.gov/pubmed/27269185

doi: 10.1021/jacs.6b03714     URL     pmid: 27269185
[18]
Zhao Y F , Yang Z Y , Zhang Y X , Jing L , Guo X , Ke Z T , Hu P , Wang G X , Yan Y M , Sun K N . J. Phys. Chem. C, 2014,118(26):14238.
[19]
Xie J F , Zhang J J , Li S , Grote F , Zhang X D , Zhang H , Wang R X , Lei Y , Pan B C , Xie Y . J. Am. Chem. Soc., 2014,136(4):1680. https://pubs.acs.org/doi/10.1021/ja4129636

doi: 10.1021/ja4129636     URL    
[20]
Lin L X , Huang J T , Li X F , Abass M A , Zhang S W . Appl. Catal. B-Environ., 2017,203:615.
[21]
Lv M L , Ni S , Wang Z , Cao T C , Xu X X . Int. J. Hydrogen Energ., 2016,41(3):1550.
[22]
Fan C Y , Fu X X , Shi L , Yu S Q , Qian G D , Wang Z Y . J. Alloy. Compd., 2017,703:96.
[23]
Cai J M , Zhu Y M , Liu D S , Meng M , Hu Z P , Jiang Z . ACS Catal., 2015,5(3):1708.
[24]
Marcinkowski M D , Jewell A D , Stamatakis M , Boucher M B , Lewis E A , Murphy C J , Kyriakou G , Sykes E C H . Nat. Mater., 2013,12(6):523. https://www.ncbi.nlm.nih.gov/pubmed/23603849

doi: 10.1038/nmat3620     URL     pmid: 23603849
[25]
Chen Q S , Vidal-Iglesias F J , Solla-Gullón J , Sun S G , Feliu J M . Chem. Sci., 2012,3(1):136. 9f3a4410-5d27-41eb-bdeb-69bac4a2c285 http://dx.doi.org/10.1039/c1sc00503k

doi: 10.1039/c1sc00503k     URL    
[26]
Wu Q P , Huang F , Zhao M S , Xu J , Zhou J C , Wang Y S . Nano Energy, 2016,24:63.
[27]
Khan S , Cho H , Kim D H , Han S S , Lee K H , Cho S H , Song T , Choi H . . Appl. Catal. B-Environ., 2017,206:520.
[28]
Dong F , Xiong T , Yan S , Wang H Q , Sun Y J , Zhang Y X , Huang H W , Wu Z B . J.Catal., 2016,344:401.
[29]
Salvador P , Garcia Gonzalez M L , Munoz F . J. Phys. Chem., 1992,96(25):10349.
[30]
Shi J Y , Cui H N , Liang Z X , Lu X H , Tong Y X , Su C Y , Liu H . Energy Environ. Sci., 2011,4(2):466.
[31]
Zhang X Y , Zhao Z , Zhang W W , Zhang G Q , Qu D , Miao X , Sun S R , Sun Z C . Small, 2016,12(6):793. https://www.ncbi.nlm.nih.gov/pubmed/26691211

doi: 10.1002/smll.201503067     URL     pmid: 26691211
[32]
Wei Z , Benlin D , Fengxia Z , Xinyue T , Jiming X , Lili Z , Shiyin L , Leung D Y C , Sun C . Appl. Catal. B -Environ., 2018,229:171.
[33]
Lu H J , Hao Q , Chen T , Zhang L H , Chen D M , Ma C , Yao W Q , Zhu Y F . Appl. Catal. B-Environ., 2018,237:59.
[34]
Xie T P , Liu Y , Wang H Q , Wu Z B . Appl. Surf. Sci., 2018,444:320. https://linkinghub.elsevier.com/retrieve/pii/S0169433218307414

doi: 10.1016/j.apsusc.2018.03.072     URL    
[35]
Su F L , Lu J W , Tian Y , Ma X B , Gong J L . Phys. Chem. Chem. Phys., 2013,15(29):12026. https://www.ncbi.nlm.nih.gov/pubmed/23728221

doi: 10.1039/c3cp51291f     URL     pmid: 23728221
[36]
Lim W Y , Wu H , Lim Y F , Ho G W . J. Mater. Chem. A, 2018,6(24):11416.
[37]
Li A , Zhu W J , Li C C , Wang T , Gong J L . Chem. Soc. Rev., 2019,48(7):1874. https://www.ncbi.nlm.nih.gov/pubmed/30525133

doi: 10.1039/c8cs00711j     URL     pmid: 30525133
[38]
Liu L , Ding L , Liu Y G , An W J , Lin S L , Liang Y H , Cui W Q . Appl. Catal. B-Environ., 2017,201:92.
[39]
Liang Y H , Shang R , Lu J R , Liu L , Hu J S , Cui W Q . ACS Appl. Mater. Inter., 2018,10(10):8758. https://www.ncbi.nlm.nih.gov/pubmed/29470053

doi: 10.1021/acsami.8b00198     URL     pmid: 29470053
[40]
Guo N , Zeng Y , Li H Y , Xu X J , Yu H W , Han X R . J. Hazard. Mater., 2018,353:80. https://www.ncbi.nlm.nih.gov/pubmed/29635177

doi: 10.1016/j.jhazmat.2018.03.044     URL     pmid: 29635177
[41]
Ranno L , Forno S D , Lischner J . npj Comput. Mater., 2018,4(1):31.
[42]
Han B , Liu S Q , Zhang N , Xu Y J , Tang Z R . Appl. Catal. B-Environ., 2017,202:298.
[43]
Zheng N C , Ouyang T , Chen Y B , Wang Z , Chen D Y , Liu Z Q . Catal. Sci. Technol., 2019,9(6):1357.
[44]
Yue X Z , Yi S S , Wang R W , Zhang Z T , Qiu S L . Nano Energy, 2018,47:463.
[45]
Chen P C , Liu M H , Du J S , Meckes B , Wang S Z , Lin H X , Dravid V P , Wolverton C , Mirkin C A . Science, 2019,363(6430):959. https://www.ncbi.nlm.nih.gov/pubmed/30819959

doi: 10.1126/science.aav4302     URL     pmid: 30819959
[46]
Hossain S , Niihori Y , Nair L V , Kumar B , Kurashige W , Negishi Y . Acc. Chem. Res., 2018,51(12):3114. https://www.ncbi.nlm.nih.gov/pubmed/30460847

doi: 10.1021/acs.accounts.8b00453     URL     pmid: 30460847
[47]
Greeley J , Jaramillo T F , Bonde J , Chorkendorff I B , Norskov J K . Nat. Mater., 2006,5(11):909. https://www.ncbi.nlm.nih.gov/pubmed/17041585

doi: 10.1038/nmat1752     URL     pmid: 17041585
[48]
Zhen W L , Gao H B , Tian B , Ma J T , Lu G X . ACS Appl. Mater. Inter., 2016,8(17):10808. https://www.ncbi.nlm.nih.gov/pubmed/27070204

doi: 10.1021/acsami.5b12524     URL     pmid: 27070204
[49]
Wang J X , Zhang Y , Capuano C B , Ayers K E . Sci. Rep., 2015,5:12220. https://www.ncbi.nlm.nih.gov/pubmed/26191776

doi: 10.1038/srep12220     URL     pmid: 26191776
[50]
Nandy S , Hisatomi T , Ma G , Minegishi T , Katayama M , Domen K . J. Mater. Chem. A, 2017,5(13):6106.
[51]
Xu J , Yang W M , Huang S J , Yin H , Zhang H , Radjenovic P , Yang Z L , Tian Z Q , Li J F . Nano Energy, 2018,49:363.
[52]
Enzweiler H , Yassue-Cordeiro P H , Schwaab M , Barbosa-Coutinho E , Olsen Scaliante M H N , Fernandes N R C . Int. J. Hydrogen. Energ., 2018,43(13):6515.
[53]
Fang X Z , Shang Q C , Wang Y , Jiao L , Yao T , Li Y F , Zhang Q , Luo Y , Jiang H L . Adv. Mater., 2018,30(7):1705112.
[54]
Wang P , Sheng Y , Wang F Z , Yu H G . Appl. Catal. B-Environ., 2018,220:561.
[55]
Zhen W , Ma J , Lv G X . Appl. Catal. B-Environ., 2016,190:12.
[56]
Liu Y , Ding S , Shi Y , Liu X , Wu Z , Jiang Q , Zhou T , Liu N , Hu J . . Appl. Catal. B-Environ., 2018,234:109. https://linkinghub.elsevier.com/retrieve/pii/S0926337318303667

doi: 10.1016/j.apcatb.2018.04.037     URL    
[57]
Tian B , Li Z , Zhen W , Lv G X . J. Phys. Chem. C, 2016,120(12):6409.
[58]
Zhao N , Kong L G , Dong Y M , Wang G L , Wu X M , Jiang P P . ACS. Appl. Mater. Inter., 2018,10(11):9522. https://www.ncbi.nlm.nih.gov/pubmed/29482318

doi: 10.1021/acsami.8b01590     URL     pmid: 29482318
[59]
Zhang H B , Zhang P , Qiu M , Dong J C , Zhang Y F , Lou X W D . Adv. Mater., 2019,31(6):1804883. https://www.ncbi.nlm.nih.gov/pubmed/30556181

doi: 10.1002/adma.201804883     URL     pmid: 30556181
[60]
An X Q , Wang W , Wang J P , Duan H Z , Shi J T , Yu X L . Phys. Chem. Chem. Phys., 2018,20(16):11405. https://www.ncbi.nlm.nih.gov/pubmed/29645039

doi: 10.1039/c8cp01123k     URL     pmid: 29645039
[61]
Chang Y , Xuan Y , Zhang C X , Hao H , Yu K , Liu S X . Catal. Today., 2019,327:315. https://linkinghub.elsevier.com/retrieve/pii/S0920586118304784

doi: 10.1016/j.cattod.2018.04.033     URL    
[62]
Luo M H , Lu P , Yao W F , Huang C P , Xu Q J , Wu Q , Kuwahara Y , Yamashita H . ACS. Appl. Mater. Inter., 2016,8(32):20667. https://www.ncbi.nlm.nih.gov/pubmed/27439590

doi: 10.1021/acsami.6b04388     URL     pmid: 27439590
[63]
Cao S W , Li H , Li Y , Zhu B C , Yu J G . ACS Sustain. Chem. Eng., 2018,6(5):6478. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b00259

doi: 10.1021/acssuschemeng.8b00259     URL    
[64]
Yu X , Liu G B , Li W , An L , Li Z H , Liu J W , Hu P A . Int. J. Hydrogen. Energ., 2018,43(17):8232.
[65]
Majeed I , Manzoor U , Kanodarwala F K , Nadeem M A , Hussain E , Ali H , Badshah A , Stride J A , Nadeem M A . Catal. Sci. Technol., 2018,8(4):1183.
[66]
Marchal C , Cottineau T , Méndez-Medrano M G , Colbeau-Justin C , Caps V , Keller V . Adv. Energy. Mater., 2018,8(14).
[67]
Kai S S , Xi B J , Liu X L , Ju L , Wang P , Feng Z Y , Ma X J , Xiong S L . J. Mater. Chem. A, 2018,6(7):2895. http://xlink.rsc.org/?DOI=C7TA10958J

doi: 10.1039/C7TA10958J     URL    
[68]
Xiong J H , Liu Y H , Wang D K , Liang S J , Wu W M , Wu L . J. Mater. Chem. A, 2015,3(24):12631. http://xlink.rsc.org/?DOI=C5TA02438B

doi: 10.1039/C5TA02438B     URL    
[69]
Shen L J , Luo M B , Liu Y H , Liang R W , Jing F F , Wu L . Appl. Catal. B-Environ, 2015,166/167:445. https://linkinghub.elsevier.com/retrieve/pii/S0926337314007693

doi: 10.1016/j.apcatb.2014.11.056     URL    
[70]
Xiang Q , Yu J , Jaroniec M . J. Am. Chem. Soc., 2012,134(15):6575. 6853467f-c1f8-4ea9-8014-4cebb210c34f http://dx.doi.org/10.1021/ja302846n

doi: 10.1021/ja302846n     URL     pmid: 22458309
[71]
Spanu D , Recchia S , Mohajernia S , Tomanec O , Kment Š , Zboril R , Schmuki P , Altomare M . ACS Catal., 2018,8(6):5298. https://pubs.acs.org/doi/10.1021/acscatal.8b01190

doi: 10.1021/acscatal.8b01190     URL    
[72]
Tian B , Zhen W L , Gao H B , Zhang X Q , Li Z , Lu G X . Appl. Catal. B-Environ., 2017,203:789. https://linkinghub.elsevier.com/retrieve/pii/S0926337316308347

doi: 10.1016/j.apcatb.2016.10.070     URL    
[73]
Si J , Xiao S , Wang Y , Zhu L , Xia X , Huang Z , Gao Y . Nanoscale, 2018,10(5):2596. https://www.ncbi.nlm.nih.gov/pubmed/29354816

doi: 10.1039/c7nr07336d     URL     pmid: 29354816
[74]
Cai J M , Wang Y T , Zhu Y M , Wu M Q , Zhang H , Li X G , Jiang Z , Meng M . ACS. Appl. Mater. Inter., 2015,7(45):24987. https://pubs.acs.org/doi/10.1021/acsami.5b07318

doi: 10.1021/acsami.5b07318     URL     pmid: 26536137
[75]
Lee W P C , Kong X Y , Tan L L , Gui M M , Sumathi S , Chai S P . Appl. Catal. B-Environ., 2018,232:117.
[1] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[2] 贾丽达, 张庆瑞. 异相Fenton催化水污染控制[J]. 化学进展, 2020, 32(7): 978-988.
[3] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.