English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 1035-1046 DOI: 10.7536/PC171106 前一篇   

• 综述 •

基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制

范淑芬3, 辛佳1,2,3*, 黄静怡3, 荣伟莉3, 郑西来1,2,3   

  1. 1. 海洋环境与生态教育部重点实验室 青岛 266100;
    2. 山东省海洋环境地质工程重点实验室 青岛 266100;
    3. 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2017-11-10 修回日期:2018-03-23 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 辛佳 E-mail:xinj15@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51408571)资助

Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems

Shufen Fan3, Jia Xin1,2,3*, Jingyi Huang3, Weili Rong3, Xilai Zheng1,2,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2017-11-10 Revised:2018-03-23 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51408571).
近年来,基于零价铁的化学还原技术因其高效性逐渐被应用于受污染地下水的原位修复。但是,该技术在实际应用中仍面临一些亟待解决的问题。零价铁作为一种高活性的电子供体,除了和目标污染物反应外,还可以与地下水中其他的氧化性物质(如O2、H+或NO3-等)反应。这些反应所造成的零价铁腐蚀,不仅会降低修复效率还会增加地下水修复成本。此外,同类或多类污染物间也存在对零价铁所释放电子的相互竞争,从而影响各自的去除效率。本文综述了基于零价铁的地下水修复体系中的电子传递过程和氧化物间的电子竞争机制,从零价铁的腐蚀和电子传递、零价铁电子选择性量化指标的提出和量化方法、地下水体中多种共存氧化物间电子竞争作用、电子效率的影响因素以及强化措施等方面进行详细介绍。最后,对该技术今后发展方向作出了展望,以期为其今后实际的地下水修复应用提供参考。
In recent years, the zero-valent iron(ZVI)-based chemical reduction technology has been applied for the in-situ groundwater remediation because of its high efficiency and low cost. However, the technology still faces up some bottleneck restrictions in engineering applications considering the complex groundwater constituents. ZVI, as a highly reactive electron donor, not only reacts with the target contaminants, but also reacts with other co-existing oxidants(O2, H+, NO3-, etc.) in the groundwater, which would negatively impact the remediation efficiency and increase the cost of remediation. In addition, electron competition usually occurs among the contaminants of the same or different categories, consequently resulting in a lower removal efficiency in a multi-solute system than in a single-solute system. Therefore, in this paper, the electron transfer process and the electron competition mechanism among different oxides in ZVI-based groundwater remediation systems are reviewed, including ZVI corrosion and electron transfer, the concept of ZVI reduction selectivity and its quantification methods, the electron competition among various coexisting oxides in groundwater, and the influence factors and enhancement methods of electron efficiency. Finally, the future development direction of the technology is forecast, so as to provide reference for future engineering application of in situ chemical remediation of groundwater.
Contents
1 Introduction
2 Zero-valent iron corrosion and electron-transfer process
2.1 Zero-valent iron corrosion
2.2 Effects of corrosion on the electron-transfer process
3 “Electron selectivity” and “electron efficiency” of ZVI
3.1 Conceptulization and quantification of electron selectivity
3.2 Calculation of “electron efficiency”
4 Electron competition of coexisting oxides
4.1 DO
4.2 H2O or H+
4.3 NO3-
4.4 Heavy metals
4.5 Organic pollutants
5 Influence factors for “electron efficiency”
5.1 The relative proportions of the reducing agent and the oxidant
5.2 pH
5.3 Other factors
6 Technical methods to improve the “electron efficiency”
6.1 “Sulfidation”
6.2 “Magnetization” or “pre-magnetization”
6.3 Zero-valent iron/Fe(Ⅱ)
7 Conclusion and outlook

中图分类号: 

()
[1] 李同燕(Li T Y), 胡伟武(Hu W W), 李文奇(Li W Q), 冯传平(Feng C P). 中国环境科学学会学术年度会议(Academic Annual Meeting of China Institute of Environmental Sciences,2014. 4104.
[2] 蓝俊康(Lan J K). 地质灾害与环境保护(J. Geol. Hazar. Environ.Prot.), 2001,(02):40.
[3] 张妍(Zhang Y), 李发东(Li F D), 欧阳竹(Ouyang Z),赵广帅(Zhao G S), 李静(Li J), 柳强(Liu Q). 环境科学(Chinese J. Environ. Sci.), 2013,(01):121.
[4] Namocat J A,Fang J, Barcelona M J, Quibuyen A T O, AbrajanoT A. J.Contam.Hydrol., 2003, 67(1/4):177.
[5] 郭秀红(Guo X H), 陈玺(Chen X), 黄冠星(Huang G X),孙继朝(Sun J C), 刘景涛(Liu J T), 汪珊(Wang S), 荆继红(Jing J H), 支兵发(Zhi B F), 陈慧川(Chen H C), 杜海燕(Du H Y), 何俊美(He J M), 梁向阳(Liang X Y), 刘昱(Liu Y). 环境化学(Environ. Chem.), 2006,(06):798.
[6] 唐凤琳(Tang F L). 中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2017.
[7] Wei J J, Xu X H, Liu Y, Wang D H. Water Res., 2006, 40(2):348.
[8] Wang Z H,Huang W L,Peng P A,Fennel D E.Chemosphere,2010, 78(2):147.
[9] 李雅(Li Y). 西北农林科技大学博士论文(Doctoral Dissertation of Northwest Agriculture & Forestry University), 2017.
[10] Melitas N, Chuffe-Moscoso O, Farrell J. Environ. Sci. Technol., 2001, 35(19):3948.
[11] Chen J, Al-Abed S R, Ryan J A, Li Z B. J. Hazard. Mater., 2001, 83(3):243.
[12] Elliott D W, Zhang W. Environ. Sci. Technol., 2001, 35(24):4922.
[13] Puls R W, Blowes D W, Gillham R W. J. Hazard. Mater., 1999, 68(1):109.
[14] Li S L, Wang W, Liang F P, Zhang W X. J. Hazard. Mater., 2017, 322:163.
[15] Phillips D H, Nooten T V, Bastiaens L, Russell M I, Dickson K, Plant S, Ahad J M E, Newton T, Elliot T, Kalin R M. Environ. Sci. Technol., 2010, 44(10):3861.
[16] 何江(He J). 湖南大学硕士论文(Master Dissertation of Hunan Universivity), 2015.
[17] Crane R A, Scott T B. J. Hazard. Mater., 2012, 211/212:112.
[18] Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39(5):1338.
[19] Liu Y Q, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41(22):7881.
[20] Schoftner P, Waldner G, Lottermoser W, Stöger-Pollach M, Freitag P, Reichenauer T G. Sci.Total Environ., 2015, 535:69.
[21] Liu H, Wang Q, Wang C, Li X Z. Chem. Eng. J., 2013, 215/216:90.
[22] Xin J, Tang F L, Zheng X L, Shao H B, Kolditz O, Lu X. Water Res., 2016, 100:80.
[23] Cho D, Song H, Schwartz F W, Kim B, Jeon B. Chemosphere, 2015, 125:41.
[24] Ritter K, Odziemkowski M S, Simpgraga R, Gillham R W, Irish D E. J. Contam. Hydrol., 2003, 65(1/2):121.
[25] Liang L P, Guan X H, Huang Y Y, Ma J Y, Sun X P, Qiao J L, Zhou G M. Sep. Purif. Technol., 2015, 156:1064.
[26] Guan X H, Sun YK, Qin H J, Li J X, Lo I M C, He D, Dong H R. Water Res., 2015, 75:224.
[27] Liu Y Q, Lowry G V. Environ. Sci. Technol., 2006, 40(19):6085.
[28] Xin J, Tang F L, Yan J, La C H, Zheng X L, Liu W. Sci. Total Environ., 2018, 626:638.
[29] Qin H J, Li J X, Yang H Y, Pan B K, Zhang W M, Guan X H. Environ. Sci. Technol., 2017, 51(9):5090.
[30] Berge N D, Ramsburg C A. J. Contam. Hydrol., 2010, 118(3/4):105.
[31] Suzuki T, Moribe M, Oyama Y, Niinae M. Chem. Eng. J.,2012, 183:271.
[32] Yang G C C, Lee H L. Water Res., 2005, 39(5):884.
[33] Lu Q, Jeen S, Gui L, Gillham R W. Water Res., 2017, 112:48.
[34] Su C, Puls R W. Environ. Sci. Technol., 2004, 38(9):2715.
[35] Farrell J, Kason M, Melitas N, Li T. Environ. Sci. Technol., 2000, 34:514.
[36] 李立军(Li L J), 马力(Ma L), 张晶(Zhang J), 赵彦宁(Zhao Y N), 陈初雨(Chen C Y), 王怀远(Wang H Y), 宇庆华(Yu Q H), 孙春(Sun C).地球学报(Acta Geoscientica Sinica),2014, 35(02):156.
[37] 龚琴红(Gong Q H), 熊江波(Xiong J B), 曾建玲(Zeng J L). 江西化工(J. Jiangxi Chem.), 2010, (04):45.
[38] 贺亚雪(He Y X), 代朝猛(Dai Z M), 苏益明(Su Y M),张亚雷(Zhang Y L). 水处理技术(Technol. Water Treat.), 2016, 42(02):1.
[39] Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302:437.
[40] 杜连柱(Du L Z),张兰英(Zhang L Y),王立东(Wang L D),房芳(Fang F). 环境污染与防治(Environ. Poll. Prot.), 2007,(08):578.
[41] 何小娟(He X J), 刘菲(Liu F), 黄园英(Huang Y Y), 李旭东(Li X D), 汤鸣皋(Tang M G), 何江涛(He J T). 环境科学(Chinese J. Environ. Sci.), 2003, (01):139.
[42] Deng B L, Burris D R, Campbell T J. Environ. Sci. Technol., 1999, 33(15):2651.
[43] Song H, Carraway E R. Environ. Sci. Technol., 2005, 39(16):6237.
[44] Yak H K, Lang Q, Wai C M. Environ. Sci. Technol., 2000, 34(13):2792.
[45] Lu Q, Gui L, Gillham R W. 地学前缘(Earth Science Frontiers), 2005, 12(z1):176.
[46] Agrawal A, Tratnyet P G. Environ. Sci. Technol., 1996, 30(1):153.
[47] 王薇(Wang Wei). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2008.
[48] Kim E, Kim J, Azad A, Chang Y. A. ACS Appl. Mater. Interfaces., 2011, 3(5):1457.
[49] Sai C, Rajajayavel S G. Water Res., 2015, 78:144.
[50] Su Y, Adeleye A S, Keller A A, Huang Y, Dai C, Zhou X, Zhang Y. Water Res., 2015, 74:47.
[51] Fan D, O Brien Johnson G, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2016, 50(17):9558.
[52] 梁丽萍(Liang L P), 孟旭(Meng X).绍兴文理学院学报(Asian Journal of Shaoxing College of Arts and Sciences), 2015,(04):7.
[53] 冯翩(Feng P), 周巧利(Zhou Q L), 关小红(Guan X H),周恭明(Zhou G M). 四川环境(J. Sichuan Environ.), 2014,(04):1.
[54] Kim D, Kim J, Choi W. J. Hazard. Mater., 2011, 192(2):928.
[55] Rakoczy R. Chem. Eng. Prog., 2010, 49(1):42.
[56] Li J X, Qin H J, Zhang W X, Shi Z, Zhao D Y, Guan X H. Sep. Purif. Technol., 2017, 176:40.
[57] Huang Y H, Zhang T C. Water Res., 2005, 39(9):1751.
[58] Liang J, Feng C T, Zeng G M, Gao X, Zhong M Z, Li X D, Li X, He X Y, Fang Y L. Environ. Pollut., 2017, 225:681.
[59] Tang C L, Huang Y P, Zhang Z Q, Chen J J, Zeng H, Huang Y H. Appl. Catal. B, 2016, 184:320.
[1] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[2] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[3] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[4] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[5] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[6] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.
[7] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[8] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2/3): 422-432.
[9] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[10] 吴洋, 王玉, 仇荣亮, 杨欣. 应用零价铁基材料还原和催化氧化降解多溴联苯醚[J]. 化学进展, 2018, 30(4): 420-428.
[11] 王艳龙, 林道辉*. 纳米零价铁与土壤组分的相互作用及其环境效应[J]. 化学进展, 2017, 29(9): 1072-1081.
[12] 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[13] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[14] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[15] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.