English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 370-383 DOI: 10.7536/PC210107 前一篇   后一篇

• 综述 •

三维铜基集流体的构筑及在锂金属电池中的应用

郭驰1, 张望1, 涂吉1, 陈盛锐1, 梁济元1,*(), 郭向可2,*()   

  1. 1 江汉大学 光电化学材料与器件教育部重点实验室 光电材料与技术学院 武汉 430056
    2 南京大学 介观化学教育部重点实验室 化学化工学院 南京 210023
  • 收稿日期:2021-01-14 修回日期:2021-02-26 出版日期:2022-02-20 发布日期:2021-03-04
  • 通讯作者: 梁济元, 郭向可
  • 基金资助:
    国家自然科学基金项目(51802122)

Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries

Chi Guo1, Wang Zhang1, Ji Tu1, Shengrui Chen1, Jiyuan Liang1(), Xiangke Guo2()   

  1. 1 Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University,Wuhan 430056, China
    2 Key Laboratory of Mesoscopic Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2021-01-14 Revised:2021-02-26 Online:2022-02-20 Published:2021-03-04
  • Contact: Jiyuan Liang, Xiangke Guo
  • Supported by:
    National Natural Science Foundation of China(51802122)

锂金属因其具有超高比容量(3860 mAh·g-1)以及较低的氧化还原电势(-3.04 V vs 标准氢电极),被认为是下一代高能量密度二次电池的理想负极材料。然而“无宿主”的金属锂在金属/电解液界面层进行沉积/剥离,不可避免地会生长枝晶,不仅使电极表面电流分布不均,同时可能会刺穿电池隔膜而导致电池短路。通过构造三维集流体/锂金属复合负极可以有效调控锂沉积行为并抑制枝晶生长,从而提升电池的库仑效率、循环寿命以及倍率性能,该领域近年来一直都是研究的热点。本文首先总结了基于三维集流体抑制锂枝晶的相关原理和模型;其次针对用于负极的铜基集流体,根据构成三维结构基底单元的维度,总结了三维铜基集流体的制备方法及其在锂金属负极保护方面的应用;最后,对三维集流体构造复合锂负极进行了总结和展望。

Lithium metal is considered as an ideal anode for next generation high energy density secondary batteries due to its high specific capacity (3860 mAh·g-1) and low redox potential (-3.04 V vs standard hydrogen electrode). However, the "hostless" lithium metal is plated/stripped at the metal/electrolyte interface layer, inevitably growing dendrites and resulting in uneven distribution of current on the surface of lithium metal, which may puncture the battery separator and cause short circuit of the battery. In practical applications, by constructing three-dimensional current collector/lithium metal composite anode, the lithium deposition behavior can be effectively regulated and the dendrite can be suppressed, which further enhances the Coulombic efficiency, cycling life and rate performance. The research on this aspect has become a hot topic in recent years. In this review, firstly, the related principles and models of the suppression of lithium dendrite based on 3D current collector are summarized. Secondly, for the copper-based current collector, the preparation methods of 3D current collectors and their application in the protection of lithium metal anode are systematically summarized according to the dimension of substrate units. Finally, we summarize and outlook on the composite lithium anode constructed by 3D current collectors.

Contents

1 Introduction

2 Mechanisms of regulating action of 3D collector on inhibition of lithium dendrite

2.1 Surface nucleation growth model

2.2 Classical nucleation theory

2.3 Heterogeneous nucleation model

2.4 Space charge model

2.5 Deposition-dissolution model

2.6 Phase field model

3 Preparation of 3D current collector based on copper powder (0D)

4 Preparation of 3D current collector based on copper nanowire (1D)

5 Preparation of 3D current collector based on copper foil (2D)

5.1 Construction of a porous copper-based collector by alloying/dealloying

5.2 Modification of copper foil by metal/metal compounds

5.3 Modification of copper foil by inorganic nonmetallic materials

6 Modification of 3D current collector based on copper foam and copper mesh

6.1 Modification of copper foam and copper mesh by metal/metal compounds

6.2 Modification of copper foam and copper mesh by inorganic nonmetallic materials

7 Conclusion and outlook

()
图1 锂金属负极的枝晶生长以及面临的几大问题[20]
Fig. 1 Dendrite growth and several major problems of lithium metal anodes[20]. Copyright©2017, American Chemical Society
图2 (a) 不同过电位下的锂成核尺寸及密度示意图[26]; (b) 自由能示意图显示增加超电势对成核能垒的影响[26]; (c) 球形锂核界面接触角示意图[29]
Fig. 2 Fundamentals of lithium nucleation and growth. (a) Nucleation size and density of lithium under different overpotential[26]; Copyright©2017, American Chemical Society. (b) Free energy schematic showing the effects of increasing overpotential on the nucleation energy barrier[26]; Copyright©2017, American Chemical Society. (c) Schematic diagram of interface contact angle of spherical lithium nucleus[29]
图3 (a) 三维铜骨架制作工艺示意图;(b) 不同条件下的库仑效率测试结果[33]
Fig. 3 (a) Illustration of the fabrication process of 3D Cu skeleton; (b) Coulombic efficiency results under different test conditions[33]. Copyright©2018, American Chemical Society
图4 COMSOL多物理模型模拟锂离子在(a)Cu箔、(b)Cu网和(c)CG宿主上反应通量示意图[38]
Fig. 4 Schematic of Li-ion reaction flux modeled using COMSOL Multiphysics for the plating of Li during the lithiation process on (a) Cu foil, (b) Cu mesh, and (c) the CG host[38]. Copyright©2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 (a) 去合金工艺示意图;(b~e) 0、2、4和8h去合金前后CuZn板材的扫描电镜截面和上表面图像,绿色虚线之间的距离代表去合金厚度;(f~h) 2、4和8 h的EDX截面图像;(i~l) 0、2、4和8 h不同条件下的集流体Li沉积模拟图[43]
Fig. 5 (a) Schematic diagram of dealloying process; (b~e) SEM cross-sectional and upper surface images of CuZn sheets before and after dealloying at 0, 2, 4 and 8 h. The distance between green dotted lines represents dealloyed thicknesses. (f~h) EDX cross-sectional images at 2, 4 and 8 h; (i~l) Li deposition diagram depicting different current collectors at 0, 2, 4 and 8 h[43]. Copyright©2020, American Chemical Society.
表1 利用金属化合物改性铜箔的方法和性能参数
Table 1 Methods and performance parameters of modifying copper foil by metal compounds
图6 (a)铜箔及碳纳米管修饰的铜箔锂沉积示意图[64];(b)3D双面多孔铜箔制备示意图[66]
Fig. 6 (a) Schematic diagram of lithium deposition for copper foil and carbon nanotube modified copper foil[64]; Copyright©2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Schematic diagram of 3D double-sided copper foil preparation[66]. Copyright©2020 Wiley-VCH GmbH & Co. KGaA, Weinheim
图7 (a)锂金属及其扫描电镜图;(b)铜网及其扫描电镜图;(c)锂金属/3D铜网复合材料及其扫描电镜图[70];(d)制作垂直定向锂-铜-锂阵列的示意图[73]
Fig. 7 (a) Digital photo of Li metal and its SEM; (b) Digital photo of copper mesh and its SEM; (c) Digital photo of Li-metal/3D copper mesh composite and its SEM[70], Copyright©2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (d)Schematic illustration of the fabrication of vertically oriented Li-Cu-Li arrays[73], Copyright©2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
图8 (a) ZnO@CF/Li电极的制备流程及其SEM图像[87];(b,c) 泡沫铜及氮化铜的熔融锂流程延时图[79]
Fig. 8 (a) Preparation process of ZnO@CF/Li electrode and its SEM image[87]. Copyright©2018, American Chemical Society. (b,c) Lithium melting process of foam-copper and copper nitride[79]. Copyright©2020 Elsevier B.V
表2 利用金属化合物改性泡沫铜的方法和性能参数
Table 2 Methods and performance parameters of modifying copper foam by metal compounds
[1]
Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(27): 7764.

doi: 10.1002/anie.201702099     URL    
[2]
Liu Y Y, Lin D C, Liang Z, Zhao J, Yan K, Cui Y. Nat. Commun., 2016, 7(1): 1.
[3]
Shang C Q, Wei B B, Zhang X Z, Shui L L, Wang X, Zhou G F. Mater. Lett., 2019, 236: 240.

doi: 10.1016/j.matlet.2018.10.106     URL    
[4]
Sun X W, Zhang X Y, Ma Q T, Guan X Z, Wang W, Luo J Y. Angew. Chem. Int. Ed., 2020, 59(17): 6665.

doi: 10.1002/anie.v59.17     URL    
[5]
Hwang J Y, Park S J, Yoon C S, Sun Y K. Energy Environ. Sci., 2019, 12(7): 2174.

doi: 10.1039/C9EE00716D     URL    
[6]
Jia W S, Wang Y, Qu S J, Yao Z Y, Liu Y C, Li C, Wang Z H, Li J Z. J. Materiomics, 2019, 5(2): 176.

doi: 10.1016/j.jmat.2019.02.008     URL    
[7]
Huang G X, Chen S R, Guo P M, Tao R M, Jie K C, Liu B, Zhang X F, Liang J Y, Cao Y C. Chem. Eng. J., 2020, 395: 125122.

doi: 10.1016/j.cej.2020.125122     URL    
[8]
Wang L, Zhou Z Y, Yan X, Hou F, Wen L, Luo W B, Liang J, Dou S X. Energy Storage Mater., 2018, 14: 22.
[9]
Wang S H, Yue J P, Dong W, Zuo T T, Li J Y, Liu X L, Zhang X D, Liu L, Shi J L, Yin Y X, Guo Y G. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[10]
Wu F, Yuan Y X, Cheng X B, Bai Y, Li Y, Wu C, Zhang Q. Energy Storage Mater., 2018, 15: 148.
[11]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.

doi: 10.1021/ja312241y     pmid: 23448508
[12]
Liu Y M, Qin X Y, Zhang S Q, Zhang L H, Kang F Y, Chen G H, Duan X F, Li B H. J. Mater. Chem. A, 2019, 7(21): 13225.

doi: 10.1039/C9TA01929D     URL    
[13]
Cheng X B, Hou T Z, Zhang R, Peng H J, Zhao C Z, Huang J Q, Zhang Q. Adv. Mater., 2016, 28(15): 2888.

doi: 10.1002/adma.201506124     URL    
[14]
Huang G X, Guo P M, Wang J, Chen S R, Liang J Y, Tao R M, Tang S, Zhang X F, Cheng S J, Cao Y C, Dai S. Chem. Eng. J., 2020, 384: 123313.

doi: 10.1016/j.cej.2019.123313     URL    
[15]
Tan D H S, Banerjee A, Chen Z, Meng Y S. Nat. Nanotechnol., 2020, 15(3): 170.

doi: 10.1038/s41565-020-0657-x     URL    
[16]
Lu W Y, Wu C, Wei W F, Ma J M, Chen L B, Chen Y J. J. Mater. Chem. A, 2019, 7(42): 24262.

doi: 10.1039/C9TA09396F     URL    
[17]
Huang G X, Lou P, Xu G H, Zhang X F, Liang J Y, Liu H H, Liu C, Tang S, Cao Y C, Cheng S J. J. Alloys Compd., 2020, 817: 152753.

doi: 10.1016/j.jallcom.2019.152753     URL    
[18]
Ye M H, Jin X T, Nan X X, Gao J, Qu L T. Energy Storage Mater., 2020, 24: 153.
[19]
Tang W, Yin X S, Kang S J, Chen Z X, Tian B B, Teo S L, Wang X W, Chi X, Loh K P, Lee H W, Zheng G W. Adv. Mater., 2018, 30(34): 1801745.

doi: 10.1002/adma.v30.34     URL    
[20]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115     URL    
[21]
Yang Y, Yuan W, Zhang X Q, Ke Y Z, Qiu Z Q, Luo J, Tang Y, Wang C, Yuan Y H, Huang Y. Appl. Energy, 2020, 276: 115464.

doi: 10.1016/j.apenergy.2020.115464     URL    
[22]
Jäckle M, Groß A. J. Chem. Phys., 2014, 141(17): 174710.

doi: 10.1063/1.4901055     URL    
[23]
Ling C, Banerjee D, Matsui M. Electrochimica Acta, 2012, 76: 270.

doi: 10.1016/j.electacta.2012.05.001     URL    
[24]
Matsui M. J. Power Sources, 2011, 196(16): 7048.

doi: 10.1016/j.jpowsour.2010.11.141     URL    
[25]
Liu F F, Zhang Z W, Ye S F, Yao Y, Yu Y. Acta Physico-Chimica Sinica, 2020, 2006021.
( 刘凡凡, 张志文, 叶淑芬, 姚雨, 余彦. 物理化学学报, 2020, 2006021.).
[26]
Pei A, Zheng G Y, Shi F F, Li Y Z, Cui Y. Nano Lett., 2017, 17(2): 1132.

doi: 10.1021/acs.nanolett.6b04755     URL    
[27]
Rosso M, Brissot C, Teyssot A, DollÉ M, Sannier L, Tarascon J M, Bouchet R, Lascaud S. Electrochimica Acta, 2006, 51(25): 5334.

doi: 10.1016/j.electacta.2006.02.004     URL    
[28]
Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Energy Environ. Sci., 2014, 7(2): 513.

doi: 10.1039/C3EE40795K     URL    
[29]
Qiu X G, Liu W, Liu J D, Li J Z, Zhang K, Cheng F Y. Acta Physico-Chimica Sinica, 2020, 2009012.
( 邱晓光, 刘威, 刘九鼎, 李俊志, 张凯, 程方益. 物理化学学报, 2020, 2009012.).
[30]
Thirumalraj B, Hagos T T, Huang C J, Teshager M A, Cheng J H, Su W N, Hwang B J. J. Am. Chem. Soc., 2019, 141(46): 18612.

doi: 10.1021/jacs.9b10195     URL    
[31]
Chazalviel J N. Phys. Rev. A, 1990, 42(12): 7355.

doi: 10.1103/PhysRevA.42.7355     URL    
[32]
Zhang R, Shen X, Cheng X B, Zhang Q. Energy Storage Mater., 2019, 23: 556.
[33]
Wang Y Y, Wang Z J, Lei D N, Lv W, Zhao Q, Ni B, Liu Y, Li B H, Kang F Y, He Y B. ACS Appl. Mater. Interfaces, 2018, 10(24): 20244.

doi: 10.1021/acsami.8b04881     URL    
[34]
Jackson E D, Prieto A L. ACS Appl. Mater. Interfaces, 2016, 8(44): 30379.

doi: 10.1021/acsami.6b08033     URL    
[35]
Lee D, Sun S, Kwon J, Park H, Jang M, Park E, Son B, Jung Y, Song T, Paik U. Adv. Mater., 2020, 32(7): 1905573.

doi: 10.1002/adma.v32.7     URL    
[36]
Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F, Yu S H. Nano Lett., 2016, 16(7): 4431.

doi: 10.1021/acs.nanolett.6b01581     URL    
[37]
Yan K, Sun B, Munroe P, Wang G X. Energy Storage Mater., 2018, 11: 127.
[38]
Hong S H, Jung D H, Kim J H, Lee Y H, Cho S J, Joo S H, Lee H W, Lee K S, Lee S Y. Adv. Funct. Mater., 2020, 30(14): 2070088.

doi: 10.1002/adfm.v30.14     URL    
[39]
Chu H C, Tuan H Y. J. Power Sources, 2017, 346: 40.

doi: 10.1016/j.jpowsour.2017.02.041     URL    
[40]
Jia W S, Liu Y C, Wang Z H, Qing F Z, Li J Z, Wang Y, Xiao R J, Zhou A J, Li G B, Yu X Q, Hu Y S, Li H, Wang Z X, Huang X J, Chen L Q. Sci. Bull., 2020, 65(22): 1907.

doi: 10.1016/j.scib.2020.07.012     URL    
[41]
An Y L, Fei H F, Zeng G F, Xu X Y, Ci L J, Xi B J, Xiong S L, Feng J K, Qian Y T. Nano Energy, 2018, 47: 503.

doi: 10.1016/j.nanoen.2018.03.036     URL    
[42]
Zhao H, Lei D N, He Y B, Yuan Y F, Yun Q B, Ni B, Lv W, Li B H, Yang Q H, Kang F Y, Lu J. Adv. Energy Mater., 2018, 8(19): 1800266.

doi: 10.1002/aenm.v8.19     URL    
[43]
Zhang D, Dai A, Wu M, Shen K, Xiao T, Hou G Y, Lu J, Tang Y P. ACS Energy Lett., 2020, 5(1): 180.

doi: 10.1021/acsenergylett.9b01987     URL    
[44]
Yun Q B, He Y B, Lv W, Zhao Y, Li B H, Kang F Y, Yang Q H. Adv. Mater., 2016, 28(32): 6932.

doi: 10.1002/adma.201601409     URL    
[45]
Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39(8): 3115.

doi: 10.1039/b919877f     URL    
[46]
Liang X, Pang Q, Kochetkov I R, Sempere M S, Huang H, Sun X Q, Nazar L F. Nat. Energy, 2017, 2(9): 1.

doi: 10.1038/ng0992-1     URL    
[47]
Li F, Tan Y H, Yin Y C, Zhang T W, Lu L L, Song Y H, Tian T, Shen B, Zhu Z X, Yao H B. Chem. Sci., 2019, 10(42): 9735.

doi: 10.1039/C9SC01845J     URL    
[48]
Ren F H, Li Z D, Zhu Y, Huguet P, Deabate S, Wang D Y, Peng Z. Nano Energy, 2020, 73: 104746.

doi: 10.1016/j.nanoen.2020.104746     URL    
[49]
Ye H, Zheng Z J, Yao H R, Liu S C, Zuo T T, Wu X W, Yin Y X, Li N W, Gu J J, Cao F F, Guo Y G. Angew. Chem. Int. Ed., 2019, 58(4): 1094.

doi: 10.1002/anie.v58.4     URL    
[50]
Fan H L, Gao C H, Dong Q Y, Hong B, Fang Z, Hu M Y, Lai Y Q. J. Electroanal. Chem., 2018, 824: 175.

doi: 10.1016/j.jelechem.2018.07.056     URL    
[51]
Song R S, Wang B, Xie Y, Ruan T T, Wang F, Yuan Y, Wang D L, Dou S X. J. Mater. Chem. A, 2018, 6(37): 17967.

doi: 10.1039/C8TA06775A     URL    
[52]
Yin D M, Huang G, Na Z L, Wang X X, Li Q, Wang L M. ACS Energy Lett., 2017, 2(7): 1564.

doi: 10.1021/acsenergylett.7b00215     URL    
[53]
Park S, Jin H J, Yun Y S. Adv. Mater., 2020, 32(51): 2070386.

doi: 10.1002/adma.v32.51     URL    
[54]
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6(1): 1.
[55]
Wang L M, Tang Z F, Lin J, He X D, Chen C S, Chen C H. J. Mater. Chem. A, 2019, 7(29): 17376.

doi: 10.1039/c9ta05357c    
[56]
Zhang C, Lv W, Zhou G M, Huang Z J, Zhang Y B, Lyu R Y, Wu H L, Yun Q B, Kang F Y, Yang Q H. Adv. Energy Mater., 2018, 8(21): 1703404.

doi: 10.1002/aenm.v8.21     URL    
[57]
Wang G, Xiong X H, Zou P J, Fu X X, Lin Z H, Li Y P, Liu Y Z, Yang C H, Liu M L. Chem. Eng. J., 2019, 378: 122243.

doi: 10.1016/j.cej.2019.122243     URL    
[58]
Wang M Q, Peng Z, Lin H, Li Z D, Liu J, Ren Z M, He H Y, Wang D Y. Acta Physico-Chimica Sinica, 2020, 2007016.
( 王木钦, 彭哲, 林欢, 李振东, 刘健, 任重民, 何海勇, 王德宇. 物理化学学报, 2020, 2007016.).
[59]
Chang X S, Liu H, Yang H, Di J, Tang W H, Fu H D, Li M Y, Liu R P. J. Materiomics, 2020, 6(1): 54.

doi: 10.1016/j.jmat.2019.11.007     URL    
[60]
Zhang C, Lyu R Y, Lv W, Li H, Jiang W, Li J, Gu S C, Zhou G M, Huang Z J, Zhang Y B, Wu J Q, Yang Q H, Kang F Y. Adv. Mater., 2019, 31(48): 1970336.

doi: 10.1002/adma.v31.48     URL    
[61]
Lu S T, Wang Z D, Yan H, Wang R, Lu K, Cheng Y W, Qin W, Wu X H. J. Energy Chem., 2020, 41: 87.

doi: 10.1016/j.jechem.2019.04.024     URL    
[62]
Hu M F, Yuan Y, Guo M, Pan Y K, Long D H. J. Mater. Chem. A, 2018, 6(30): 14910.

doi: 10.1039/C8TA04343D     URL    
[63]
Zhang Q, Luan J Y, Tang Y G, Ji X B, Wang S Y, Wang H Y. J. Mater. Chem. A, 2018, 6(38): 18444.

doi: 10.1039/C8TA07612J     URL    
[64]
Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Adv. Funct. Mater., 2020, 30(4): 1906444.

doi: 10.1002/adfm.v30.4     URL    
[65]
Ren Y B, He X W, Sui W B, Zhang L C, Zhang H, Xia Y Q, Shi T S, Song M Y, Wang K P, Li G C. J. Mater. Res. Technol., 2020, 9(4): 8081.

doi: 10.1016/j.jmrt.2020.05.086     URL    
[66]
Lin K, Li T, Chiang S W, Liu M, Qin X Y, Xu X F, Zhang L H, Kang F Y, Chen G H, Li B H. Small, 2020, 16(37): 2001784.

doi: 10.1002/smll.v16.37     URL    
[67]
Ke X, Cheng Y F, Liu J, Liu L Y, Wang N G, Liu J P, Zhi C Y, Shi Z C, Guo Z P. ACS Appl. Mater. Interfaces, 2018, 10(16): 13552.

doi: 10.1021/acsami.8b01978     URL    
[68]
Yan K, Lee H W, Gao T, Zheng G Y, Yao H B, Wang H T, Lu Z D, Zhou Y, Liang Z, Liu Z F, Chu S, Cui Y. Nano Lett., 2014, 14(10): 6016.

doi: 10.1021/nl503125u     URL    
[69]
Li Q, Zhu S P, Lu Y Y. Adv. Funct. Mater., 2017, 27(18): 1606422.

doi: 10.1002/adfm.201606422     URL    
[70]
Jin S, Jiang Y, Ji H X, Yu Y. Adv. Mater., 2018, 30(48): 1802014.

doi: 10.1002/adma.v30.48     URL    
[71]
Huang Z J, Zhang C, Lv W, Zhou G M, Zhang Y B, Deng Y Q, Wu H L, Kang F Y, Yang Q H. J. Mater. Chem. A, 2019, 7(2): 727.

doi: 10.1039/C8TA10341K     URL    
[72]
Zhao Y, Ren L, Wang A, Luo J. Acta Phys. Chimica Sin., 2020, 36(12): 122.
[73]
Cao Z J, Li B, Yang S B. Adv. Mater., 2019, 31(29): 1901310.

doi: 10.1002/adma.v31.29     URL    
[74]
Zhang X Y, Wang A X, Lv R, Luo J Y. Energy Storage Mater., 2019, 18: 199.
[75]
Yin Y C, Yu Z L, Ma Z Y, Zhang T W, Lu Y Y, Ma T, Zhou F, Yao H B, Yu S H. Natl. Sci. Rev., 2019, 6(2): 247.

doi: 10.1093/nsr/nwy148    
[76]
Yang C P, Fu K, Zhang Y, Hitz E, Hu L B. Adv. Mater., 2017, 29(36): 1701169.

doi: 10.1002/adma.v29.36     URL    
[77]
Liu X, Huang J Q, Zhang Q, Mai L. Adv. Mater., 2017, 29.
[78]
Adair K R, Iqbal M, Wang C H, Zhao Y, Banis M N, Li R Y, Zhang L, Yang R, Lu S G, Sun X L. Nano Energy, 2018, 54: 375.

doi: 10.1016/j.nanoen.2018.10.002     URL    
[79]
Park H, Kwon J, Song T, Paik U. J. Power Sources, 2020, 477: 228776.

doi: 10.1016/j.jpowsour.2020.228776     URL    
[80]
Ye Y, Liu Y T, Wu J L, Yang Y F. J. Power Sources, 2020, 472: 228520.

doi: 10.1016/j.jpowsour.2020.228520     URL    
[81]
Luan J Y, Zhang Q, Yuan H Y, Peng Z G, Tang Y G, Wu S G, Wang H Y. Chem. Eng. J., 2020, 395: 124922.

doi: 10.1016/j.cej.2020.124922     URL    
[82]
Yue X Y, Wang W W, Wang Q C, Meng J K, Wang X X, Song Y, Fu Z W, Wu X J, Zhou Y N. Energy Storage Mater., 2019, 21: 180.
[83]
Ma Y, Gu Y T, Yao Y Z, Jin H D, Zhao X H, Yuan X T, Lian Y B, Qi P W, Shah R, Peng Y, Deng Z. J. Mater. Chem. A, 2019, 7(36): 20926.

doi: 10.1039/C9TA08687K     URL    
[84]
Li J, Tang H L, Wang Y, Huang Z Y, Zhong J X. J. Mater. Sci.: Mater. Electron., 2017, 28(3): 2353.

doi: 10.1007/BF01151665     URL    
[85]
Jiang Y P, Wang B, Liu A M, Song R S, Bao C Y, Ning Y, Wang F, Ruan T T, Wang D L, Zhou Y. Electrochimica Acta, 2020, 339: 135941.

doi: 10.1016/j.electacta.2020.135941     URL    
[86]
Li R, Wang J X, Lin L D, Wang H, Wang C M, Zhang C H, Song C H, Tian F, Yang J, Qian Y T. Mater. Today Energy, 2020, 15: 100367.
[87]
Qin L G, Xu H, Wang D, Zhu J F, Chen J, Zhang W, Zhang P G, Zhang Y, Tian W B, Sun Z M. ACS Appl. Mater. Interfaces, 2018, 10(33): 27764.

doi: 10.1021/acsami.8b07362     URL    
[88]
Tan L, Li X H, Cheng M, Liu T C, Wang Z X, Guo H J, Yan G C, Li L J, Liu Y, Wang J X. J. Power Sources, 2020, 463: 228178.

doi: 10.1016/j.jpowsour.2020.228178     URL    
[89]
Lin K, Xu X F, Qin X Y, Zhang G Q, Liu M, Lv F, Xia Y, Kang F Y, Chen G H, Li B H. Energy Storage Mater., 2020, 26: 250.
[90]
Xu P, Lin X D, Hu X Y, Cui X Y, Fan X X, Sun C, Xu X M, Chang J K, Fan J M, Yuan R M, Mao B W, Dong Q F, Zheng M S. Energy Storage Mater., 2020, 28: 188.
[91]
Lei M N, Wang J G, Ren L B, Nan D, Shen C, Xie K Y, Liu X R. ACS Appl. Mater. Interfaces, 2019, 11(34): 30992.

doi: 10.1021/acsami.9b09975     URL    
[92]
Lei M N, You Z Y, Ren L B, Liu X R, Wang J G. J. Power Sources, 2020, 463: 228191.

doi: 10.1016/j.jpowsour.2020.228191     URL    
[93]
Peng Z, Ren F H, Yang S S, Wang M Q, Sun J, Wang D Y, Xu W, Zhang J G. Nano Energy, 2019, 59: 110.

doi: 10.1016/j.nanoen.2019.02.033    
[94]
Ren F H, Peng Z, Wang M Q, Xie Y, Li Z D, Wan H, Lin H, Wang D Y. Energy Storage Mater., 2019, 16: 364.
[95]
Zhang R, Wen S W, Wang N, Qin K Q, Liu E Z, Shi C S, Zhao N Q. Adv. Energy Mater., 2018, 8(23): 1800914.

doi: 10.1002/aenm.v8.23     URL    
[96]
Zhou Y, Zhao K, Han Y, Sun Z H, Zhang H T, Xu L Q, Ma Y F, Chen Y S. J. Mater. Chem. A, 2019, 7(10): 5712.

doi: 10.1039/C8TA12064A     URL    
[97]
Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11(7): 626.

doi: 10.1038/nnano.2016.32     URL    
[98]
Yu J, Dang Y Y, Bai M H, Peng J X, Zheng D D, Zhao J K, Li L B, Fang Z. Front. Chem., 2019, 7: 748.

doi: 10.3389/fchem.2019.00748     URL    
[99]
Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 2862.

doi: 10.1073/pnas.1518188113     URL    
[1] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[2] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[3] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[4] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[5] 刘宏芳,郑碧娟. 微生物燃料电池[J]. 化学进展, 2009, 21(6): 1349-1355.