English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1776-1784 前一篇   后一篇

• 综述与评论 •

双金属氰化络合物及其催化的聚合反应

孙学科1, 陈上2, 张兴宏*1, 戚国荣1   

  1. 1. 高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027;
    2. 吉首大学化学化工学院 吉首 416000
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 张兴宏 E-mail:xhzhang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21074106)、浙江省自然科学基金项目(No.Y4090047)、浙江省科技厅项目(No.2010C31036)和湖南省自然科学基金项目(No.07JJ6012)资助

Double Metal Cyanide Complex Catalyst and Its Catalysis for Epoxides-Involved Polymerization

Sun Xueke1, Chen Shang2, Zhang Xinghong1, Qi Guorong1   

  1. 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China;
    2. College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China) Abstract This review focuses on the recent advances in double metal cyanide complex (DMCC) catalyst and its catalysis for epoxides-involved polymerizations. DMCC is an inorganic coordinated polymer with three- dimensional network, in which the inner metal M is linked with the external metal M by several cyano-bridges ( M-C N-M, generally, M=divalent metal ions such as Zn2+, Fe2+, Co2+, Ni2+, et al., M=transition metal ions such as Fe2+, Fe3+, Co2+, Co3+, Ni2+, et al). The external metal M on the surface of the catalyst is generally considered to be the active site for the polymerizations due to its unsaturated coordinated structure. DMCC catalyst was initially applied to the catalysis of the ring-opening polymerization (ROP) of epoxides, and then modified and used as a highly active catalyst for making polyether-polyols with both moderate or high molecular weights and low unsaturation degrees. Later, this catalyst was utilized to catalyze the alternating copolymerization of epoxides and CO2 for producing aliphatic polycarbonates. The productivity of DMCC-catalyzed epoxides/CO2 copolymerization is clearly higher than those of other heterogeneous catalysts, while the polycarbonate selectivity of this catalyst is unsatisfied, e.g.: for propylene oxide (PO)/CO2 copolymerization, the maximum alternating degree of the resultant copolymer was up to ~74%. That is, the copolymer is a poly (ether-carbonate) with random chain structure. However, Zn-Co DMCC exhibits high activity (TOF: 3 815h-1) for cyclohexene oxide (CHO)/CO2 copolymerization with high alternating degree of >90%. Furthermore, this catalyst can also be applied to catalyze epoxide/cyclic anhydrides for producing polyesters, epoxide/CS2 copolymerization for producing polythiocarbonates, as well as epoxide/cyclic anhydride/CO2 terpolymerization for producing poly (carbonate-ester
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
本文综述了双金属氰化络合物及其催化的环氧化物参与的聚合反应研究。双金属氰化络合物是由其内界金属M通过氰基与外界金属M连接形成的含 M—C≡N-M 桥键的三维网络状无机高分子(M一般为Zn2+、Fe2+、Co2+和Ni2+等二价金属离子,M一般为Fe2+、Fe3+、Co2+、Co3+和Ni2+等过渡金属离子)。外界金属M一般被认为是催化反应的活性中心金属。该类催化剂早期被用于催化环氧化物开环聚合,并逐步发展成为合成中高分子量、低不饱和度聚醚多元醇的极高效催化剂。近年来该类催化剂被用来催化环氧化物/环状酸酐共聚、环氧化物/CX2(X≡O,S)共聚和环氧化物/环状酸酐/CO2三元共聚反应合成聚酯、聚碳酸酯、聚(醚-碳酸酯)、聚硫代碳酸酯和聚(碳酸酯-酯)等具有生物降解性的聚合物。尤其对氧化环己烯(CHO)与CO2(或酸酐)共聚,锌-钴双金属氰化络合物表现出了极高的催化活性和选择性。结合本研究组十多年的研究结果,本文讨论了双金属氰化络合物催化活性中心的可能结构和催化机理,提出了双金属氰化络合物催化聚合的共性难题和解决这些问题的方向。
This review focuses on the recent advances in double metal cyanide complex (DMCC) catalyst and its catalysis for epoxides-involved polymerizations. DMCC is an inorganic coordinated polymer with three- dimensional network, in which the inner metal M is linked with the external metal M by several cyano-bridges (M—C≡N—M[JG)], generally, M=divalent metal ions such as Zn2+, Fe2+, Co2+, Ni2+, et al., M=transition metal ions such as Fe2+, Fe3+, Co2+, Co3+, Ni2+, et al). The external metal M on the surface of the catalyst is generally considered to be the active site for the polymerizations due to its unsaturated coordinated structure. DMCC catalyst was initially applied to the catalysis of the ring-opening polymerization (ROP) of epoxides, and then modified and used as a highly active catalyst for making polyether-polyols with both moderate or high molecular weights and low unsaturation degrees. Later, this catalyst was utilized to catalyze the alternating copolymerization of epoxides and CO2 for producing aliphatic polycarbonates. The productivity of DMCC-catalyzed epoxides/CO2 copolymerization is clearly higher than those of other heterogeneous catalysts, while the polycarbonate selectivity of this catalyst is unsatisfied, e.g.: for propylene oxide (PO)/CO2 copolymerization, the maximum alternating degree of the resultant copolymer was up to ~74%. That is, the copolymer is a poly (ether-carbonate) with random chain structure. However, Zn-Co DMCC exhibits high activity (TOF: 3 815h-1) for cyclohexene oxide (CHO)/CO2 copolymerization with high alternating degree of >90%. Furthermore, this catalyst can also be applied to catalyze epoxide/cyclic anhydrides for producing polyesters, epoxide/CS2 copolymerization for producing polythiocarbonates, as well as epoxide/cyclic anhydride/CO2 terpolymerization for producing poly (carbonate-ester)s with high productivity. Based on the research work of our group in recent ten years, this review will discuss the possible structure of the active sites of DMCC and related catalytic mechanism, as well as some common problems for DMCC and DMCC catalyzed polymerizations and possible solutions. Content 1 Introduction
2 Preparation and structure of DMCC
3 Ring-opening polymerization of epoxides catalyzed by DMCC
4 Copolymerization of CO2/epoxides catalyzed by DMCC
5 Copolymerization of epoxides/cyclic anhydride and terpolymerization of CO2/epoxide/cyclic anhydride catalyzed by DMCC
6 Copolymerization of CS2/epoxides catalyzed by DMCC
7 Conclusions and outlook

中图分类号: 

()
[1] Herold R J. Macromol. Synth., 1974, 5: 9
[2] 华正江(Hua Z J), 陈上(Chen S), 方佐(Fang Z), 戚国荣(Qi G R). 高分子学报(Acta Polymerica Sinica), 2004, 4: 551-555
[3] Hua Z, Qi G, Chen S. J. Appl. Polym. Sci., 2004, 93: 1788-1792
[4] Wang D, Zhang G, Zhang Y, Gao Y, Zhao Y, Zhou C, Zhang Q, Wang X. J. Appl. Polym. Sci., 2007, 103: 417-424
[5] Suh H S, Ha J Y, Yoon J H, Ha C S, Suh H, Kim I. React. Funct. Polym., 2010, 70: 288-293
[6] Darensbourg D J, Adams M J, Yarbrough J C. Inorg. Chem., 2001, 40: 6543-6544
[7] Darensbourg D J, Adams M J, Yarbrough J C, Phelps A L. Inorg. Chem., 2003, 42: 7809-7818
[8] Chen S, Hua Z J, Fang Z, Qi G R. Polymer, 2004, 45: 6519-6524
[9] Shang C, Qi G R, Hua Z J, Yan H Q. J. Polym. Sci. Pol. Chem., 2004, 42: 5284-5291
[10] Yi M J, Byun S H, Ha C S, Park D W, Kim I. Solid State Ionics, 2004, 172: 139-144
[11] Kim I, Yi M J, Byun S H, Park D W, Kim B U, Ha C S. Macromol. Symp., 2005, 224: 181-192
[12] Kim I, Yi M J, Lee K J, Park D W, Kim B U, Ha C S. Catal. Today, 2006, 111: 292-296
[13] Chen S, Zhang X, Lin F, Qi G. React. Kinet. Catal. Lett., 2007, 91: 69-75
[14] Zhang X H, Chen S, Wu X M, Sun X K, Liu F, Qi G R. Chin. Chem. Lett., 2007, 18: 887-890
[15] Sun X K, Zhang X H, Liu F, Chen S, Du B Y, Wang Q, Fan Z Q, Qi G R. J. Polym. Sci. Pol. Chem., 2008, 46: 3128-3139
[16] Lee I K, Ha J Y, Cao C, Park D W, Ha C S, Kim I. Catal. Today, 2009, 148: 389-397
[17] Liu Y, Huang K, Peng D, Wu H. Polymer, 2006, 47: 8453-8461
[18] Jeske R C, Rowley J M, Coates G W. Angew. Chem. Int. Edi., 2008, 47: 6041-6044
[19] Song P F, Xiao M, Du F G, Wang S J, Gan L Q, Liu G Q, Meng Y Z. J. Appl. Polym. Sci., 2008, 109: 4121-4129
[20] Yu J G, Huang K L, Liu S Q, Tang J C. Chin. J. Chem., 2008, 26: 560-563
[21] Yu J G, Huang K L, Yang Q, Liu Y F. Physica E, 2009, 41: 771-774
[22] Sun X K, Zhang X H, Chen S, Du B Y, Wang Q, Fan Z Q, Qi G R. Polymer, 2010, 51: 5719-5725
[23] Dharman M M, Yu J I, Ahn J Y, Park D W. Green Chem., 2009, 11: 1754-1757
[24] Srivastava R, Srinivas D, Ratnasamy P. J. Catal., 2006, 241: 34-44
[25] Satyarthi J K, Srinivas D, Ratnasamy P. Appl. Catal. A-Gen., 2011, 391: 427-435
[26] Yan F, Yuan Z, Lu P, Luo W, Yang L, Deng L. Renew. Energy, 2011, 36: 2026-2031
[27] Peeters A, Valvekens P, Vermoortele F, Ameloot R, Kirschhock C, De Vos D. Chem. Commun., 2011, 47: 4114-4116
[28] Sebastian J, Srinivas D. Chem. Commun., 2011, 47: 10449-10451
[29] Kuyper J, Boxhoorn G. J. Catal., 1987, 105: 163-174
[30] Kaye S S, Long J R. J. Am. Chem. Soc., 2005, 127: 6506-6507
[31] Qin Y S, Wang X H, Wang F S. Progress in Chemistry, 2011, 23(4): 613-622
[32] 于剑昆(Yu J). 广州化学(Guangzhou Chemistry), 2004, 29(3): 47-54
[33] Zhang X H, Wei R J, Sun X K, Zhang J F, Du B Y, Fan Z Q, Qi G R. Polymer, 2011, 52: 5494-5502
[34] Chen S, Xiao Z, Ma M. J. Appl. Polym. Sci., 2008, 107: 3871-3877
[35] Wu L C, Yu A F, Zhang M, Liu B H, Chen L B. J. Appl. Polym. Sci., 2004, 92: 1302-1309
[36] Huang Y J, Qi G R, Wang Y H. J. Polym. Sci. Pol. Chem., 2002, 40: 1142-1150
[37] Huang Y J, Qi G R, Chen L S. Appl. Catal. A-Gen., 2003, 240: 263-271
[38] Huang Y J, Zhang X H, Hua Z J, Chen S L, Qi G R. Macromol. Chem. Physics, 2010, 211: 1229-1237
[39] Huang Y J, Zhang X H, Hua Z J, Qi G R. Chin. Chem. Lett., 2010, 21: 897-901
[40] Zhang X H, Hua Z J, Chen S, Liu F, Sun X K, Qi G R. Appl. Catal. A-Gen., 2007, 325: 91-98
[41] Garcia J L, Jang E J, Alper H. J. Appl. Polym. Sci., 2002, 86: 1553-1557
[42] Kim I, Ahn J T, Ha C S, Yang C S, Park I. Polymer, 2003, 44: 3417-3428
[43] Lee S, Baek S T, Anas K, Ha C S, Park D W, Lee J W, Kim I. Polymer, 2007, 48: 4361-4367
[44] 田杰生(Tian J S), 王金泉(Wang J Q), 杜亚(Du Y), 何良年(He L N). 化学进展(Prog. Chem.), 2006, 18(1): 74-79
[45] Robertson N J, Qin Z Q, Dallinger G C, Lobkovsky E B, Lee S, Coates G W. Dalton Trans., 2006, 5390-5395
[46] Liu Y, Peng D, Huang K, Liu S, Liu Z. J. Appl. Polym. Sci., 2011, 122: 3248-3254
[47] Huijser S, HosseiniNejad E, Sablong R l, Jong C d, Koning C E, Duchateau R. Macromolecules, 2011, 44: 1132-1139
[48] Zhang X H, Liu F, Sun X K, Chen S, Du B Y, Qi G R, Wan K M. Macromolecules, 2008, 41: 1587-1590
[49] 张兴宏(Zhang X H), 黄亦军(Huang Y J), 刘斐(Liu F), 孙学科(Sun X K), 范志强(Fan Z Q), 戚国荣(Qi G R). 高分子学报(Acta Polymerica Sinica), 2009, 6: 546-552
[50] Darensbourg D J, Andreatta J R, Jungman M J, Reibenspies J H. Dalton Trans., 2009, 8891-8899
[51] 肖红戟(Xiao H J), 杨淑英(Yang S Y), 陈立班(Chen L B). 高分子材料科学与工程(Polymer Materials Science and Engineering), 1995, 11(4): 32-36
[52] Peng D M, Huang K L, Liu Y F, Liu S Q, Wu H, Xiao H. Polym. Bull., 2007, 59: 117-125
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[3] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[9] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[10] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[11] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[12] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[13] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[14] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[15] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.