English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1683-1695 前一篇   后一篇

• 综述与评论 •

芳炔大环的结构与超分子性质

李洁, 黄鹏程*   

  1. 北京航空航天大学 材料科学与工程学院 北京 100191
  • 收稿日期:2012-02-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 黄鹏程 E-mail:huangpc@buaa.edu.cn

Structure and Supramolecuclar Properties of Arylacetylene Macrocycles

Li Jie, Huang Pengcheng   

  1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2012-02-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
芳炔大环是由芳(杂)环和炔键构成的具有规整多边形环状分子结构的化合物,自问世以来即受到化学家和材料学家的广泛关注。芳炔大环具有不会坍塌的刚性骨架,环上特定位置可带有柔性侧链或取代官能团,环平面上大的π电子共轭体系和环上灵活的结合点赋予芳炔大环独特而有趣的超分子性质。本文对芳炔大环的超分子性质作了综述,从大环在溶液中的缔合、热致液晶性质、一维超分子自组装及在基底表面或固-液界面二维自组装4个方面展开评述,介绍了研究方法,着重讨论了分子结构与物质性质的关系,并对芳炔大环的应用前景做了展望,为通过合理设计分子结构来制备满足尺寸、形状及功能要求的新型材料提供借鉴。
Arylacetylene macrocycles (AEMs) that contain shape-persistent backbones and allow the attachment of (functional) side groups at defined positions have attracted much attention since their invention. Due to the large π-conjugated system and the flexible bonding points at the ring, arylacetylene macrocycles are especially valuable candidates for the construction of complex supramolecular architectures. This review covers the recent progress in the research on the supramolecular properties of arylacetylene macrocycles, including aggregation in solution, liquid crystal behavior, one-dimensional self-assembly and supramolecular-assembled monolayer at the substrate surface or at the solid-liquid interface. The investigation method is introduced. The relationship between the molecular structure and the supramolecular property of AEMs are elaborated, and potential applications of AEMs are indicated. It will be helpful for the preparation of novel materials with desired size, shape and functionality through rational molecular design. Contents 1 Introduction
2 Aggregation of arylacetylene macrocycles in solution
3 Liquid crystal behavior of arylacetylene macrocycles
3.1 Nematic liquid crystal
3.2 Columnar liquid crystal
4 One-dimensional self-assembly of arylacetylene macrocycles
4.1 Influence of molecular structure
4.2 Influence of fabrication conditions
5 Monolayer of arylacetylene macrocycles at the substrate surface or at the solid-liquid interface
5.1 Influence of molecular structure
5.2 Influence of solvent and substrate
5.3 Influence of guest molecule
6 Conclusion and outlook

中图分类号: 

()
[1] 胡文平(Hu W P), 刘云圻(Liu Y Q), 朱道本(Zhu D B). 世界科技研究与发展(World Sci-Tech R & D), 2004, 26 (3): 1-15
[2] Toksoz S, Acar H, Guler M O. Soft Matter, 2010, 6 (23): 5839-5849
[3] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105 (4): 1491-1546
[4] Höger S. Chem. Eur. J., 2004, 10 (6): 1320-1329
[5] Höger S. J. Polym. Sci. Part A: Polym. Chem., 1999, 37 (15): 2685-2698
[6] Höger S, Bonrad K, Rosselli S, Ramminger A, Wagner T, Silier B, Wiegand S, Häuβler W, Lieser G, Scheumann V. Macromol. Symp., 2002, 177 (1): 185-191
[7] 程晓红(Cheng X H), 鞠秀萍(Ju X P), Höger S. 有机化学(Chinese J. Org. Chem.), 2006, 26 (5): 733-743
[8] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40 (6): 988-1011
[9] Yamaguchi Y, Yoshida Z. Chem. Eur. J., 2003, 9 (22): 5430-5440
[10] Shetty A S, Zhang J S, Moore J S. J. Am. Chem. Soc., 1996, 118 (5): 1019-1027
[11] Tobe Y, Utsumi N, Kawabata K, Nagano A, Adachi K, Araki S, Sonoda M, Hirose K, Naemura K. J. Am. Chem. Soc., 2002, 124 (19): 5350-5364
[12] Zhang J S, Moore J S. J. Am. Chem. Soc., 1992, 114 (23): 9701-9702
[13] Shu L J, Mayor M. Chem. Commun., 2006, (39): 4134-4136
[14] Shu L J, Müri M, Krupke R, Mayor M. Org. Biomol. Chem., 2009, 7 (6): 1081-1092
[15] Lin C H, Tour J. J. Org. Chem., 2002, 67 (22): 7761-7768
[16] Boden B N, Hui J K H, MacLachlan M J. J. Org. Chem., 2008, 73 (20): 8069-8072
[17] Tobe Y, Utsumi N, Kawahata K, Naemura K. Tetrahedron Lett., 1996, 37 (52): 9325-9328
[18] Sonoda M, Yamaguchi Y, Tahara K, Hirose K, Tobe Y. Tetrahedron, 2008, 64 (50): 11490-11494
[19] Sugiura H, Takahira Y, Yamaguchi M. J. Org. Chem., 2005, 70 (14): 5698-5708
[20] Höger S, Bonrad K, Mourran A, Beginn U, Möller M. J. Am. Chem. Soc., 2001, 123 (24): 5651-5659
[21] Wettach H, Höger S, Chaudhuri D, Lupton J M, Liu F, Lupton E M, Tretiak S, Wang G J, Li M, De Feyter S, Fischer S, Förster S. J. Mater. Chem., 2011, 21 (5): 1404-1415
[22] Lahiri S, Thompson J L, Moore J S. J. Am. Chem. Soc., 2000, 122 (46): 11315-11319
[23] Dingenouts N, Klyatskaya S, Rosenfeldt S, Ballauff M, Höger S. Macromolecules, 2009, 42 (15): 5900-5902
[24] Zhao D H, Moore J S. J. Org. Chem., 2002, 67 (11): 3548-3554
[25] Tobe Y, Nagano A, Kawabata K, Sonoda M, Naemura K. Org. Lett., 2000, 2 (21): 3265-3268
[26] Tobe Y, Utsumi N, Nagano A, Naemura K. Angew. Chem. Int. Ed., 1998, 37 (9): 1285-1287
[27] Rosselli S, Ramminger A D, Wagner T, Silier B, Wiegand S, Häuβler W, Lieser G, Scheumann V, Höger S. Angew. Chem. Int. Ed., 2001, 40 (17): 3137-3141
[28] Fritzsche M, Jester S, Höger S, Klaus C, Dingenouts N, Linder P, Drechsler M, Rosenfeldt S. Macromolecules, 2010, 43 (20): 8379-8388
[29] Rosselli S, Ramminger A, Wagner T, Lieser G, Höger S. Chem. Eur. J., 2003, 9 (15): 3481-3491
[30] Gielen J C, Heyen A V, Klyatskaya S, Vanderlinden W, Höger S, Maan J C, De Feyter S, Christianen P C M. J. Am. Chem. Soc., 2009, 131 (40): 14134-14135
[31] Chandrasekhar S. Liq. Cryst., 1993, 14 (1): 3-14
[32] Chandrasekhar S, Prasad S K. Contemp. Phys., 1999, 40 (4): 237-245
[33] Lehn J, Malthete J, Levelut A. J. Chem. Soc., Chem. Commun., 1985, 1985 (24): 1794-1796
[34] Chen S S, Yan Q F, Li T, Zhao D H. Org. Lett., 2010, 12 (21): 4784-4787
[35] Fischer M, Lieser G, Rapp A, Schnell I, Mamdouh W, De Feyter S, De Schryver F C, Höger S. J. Am. Chem. Soc., 2004, 126 (1): 214-222
[36] Frischmann P D, Guieu S, Tabeshi R, MacLachlan M J. J. Am. Chem. Soc., 2010, 132 (22): 7668-7675
[37] Zhang J S, Moore J S. J. Am. Chem. Soc., 1994, 116 (6): 2655-2656
[38] Mindyuk O Y, Stetzer M R, Heiney P A, Nelson J C, Moore J S. Adv. Mater., 1998, 10 (16): 1363-1366
[39] Höger S, Enkelmann V, Bonrad K, Tschierske C. Angew. Chem. Int. Ed., 2000, 39 (13): 2267-2270
[40] Höger S, Cheng X H, Ramminger A, Enkelmann V, Rapp A, Mondeshki M, Schnell I. Angew. Chem. Int. Ed., 2005, 44 (18): 2801-2805
[41] Höger S, Weber J, Leppert A, Enkelmann V. Beilstein J. Org. Chem., 2008, 4: art. no. 1
[42] Seo S H, Jones T V, Seyler H, Peters J O, Kim T H, Chang J Y, Tew G N. J. Am. Chem. Soc., 2006, 128 (29): 9264-9265
[43] Kato T, Mizoshita N, Kishimoto K. Angew. Chem. Int. Ed., 2006, 45 (1): 38-68
[44] Kato T. Science, 2002, 295 (5564): 2414-2418
[45] Shimura H, Yoshio M, Kato T. Org. Biomol. Chem., 2009, 7 (16): 3205-3207
[46] Kumar S. Chem. Soc. Rev., 2006, 35 (1): 83-109
[47] González-Rodríguez D, Schenning A P H J. Chem. Mater., 2011, 23 (3): 310-325
[48] Kim J, Lee E, Kim M, Sim E, Lee M. J. Am. Chem. Soc., 2009, 131 (49): 17768-17770
[49] Ryu J, Oh N, Lee M. Chem. Commun., 2005, (13): 1770-1772
[50] Cantin K, Rondeau-Gagné S, Néabo J R, Daigle M, Morin J. Org. Biomol. Chem., 2011, 9 (12): 4440-4443
[51] Mössinger D, Chaudhuri D, Kudernac T, Lei S B, De Feyter S, Lupton J M, Höger S. J. Am. Chem. Soc., 2010, 132 (4): 1410-1423
[52] Cheng X H, Heyen A V, Mamdouh W, Uji-i H, De Schryver F, Höger S, De Feyter S. Langmuir, 2007, 23 (3): 1281-1286
[53] Nakao K, Nishimura M, Tamachi T, Kuwatani Y, Miyasaka H, Nishinaga T, Iyoda M. J. Am. Chem. Soc., 2006, 128 (51): 16740-16747
[54] Wang D G, Hsu J F, Bagui M, Dusevich V, Wang Y, Liu Y, Holder A J, Peng Z H. Tetrahedron Lett., 2009, 50 (18): 2147-2149
[55] Kim J, Lee E, Lee M. Macromol. Rapid Commun., 2010, 21 (11): 980-985
[56] Seo S H, Chang J Y, Tew G N. Angew. Chem. Int. Ed., 2006, 45 (45): 7526-7530
[57] Jiang J, Tew G N. Org. Lett., 2008, 10 (20): 4393-4396
[58] Savage R C, Mativetsky J M, Orgiu E, Palma M, Gbabode G, Geerts Y H, Samorì P. J. Mater. Chem., 2011, 21 (1): 206-213
[59] Palermo V, Morelli S, Simpson C, Müllen K, Samorì P. J. Mater. Chem., 2006, 16 (3): 266-271
[60] Balakrishnan K, Datar A, Zhang W, Yang X M, Naddo T, Huang J L, Zuo J M, Yen M, Moore J S, Zang L. J. Am. Chem. Soc., 2006, 128 (20): 6576-6577
[61] Zang L, Yen M, Balakrishnan K, Yang X M, Moore J S. Journal of Nanoengineering and Nanosystems, 2010, 223 (3/4): 139-147
[62] Naddo T, Che Y K, Zhang W, Balakrishnan K, Yang X M, Yen M, Zhao J C, Moore J S, Zang L. J. Am. Chem. Soc., 2007, 129 (22): 6978-6979
[63] Naddo T, Yang X M, Moore J S, Zang L. Sens. Actuators B, 2008, 134 (1): 287-291
[64] Lei S B, Heyen A V, De Feyter S, Surin M, Lazzaroni R, Rosenfeldt S, Ballauff M, Lindner P, Mössinger D, Höger S. Chem. Eur. J., 2009, 15 (11): 2518-2535
[65] Grave C, Lentz D, Schäfer A, Samorì P, Rabe J P, Franke P, Schlüter A D. J. Am. Chem. Soc., 2003, 125 (23): 6907-6918
[66] Krömer J, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Böuerle P. Angew. Chem., 2000, 112 (19): 3623-3628
[67] Grave C, Schlüter A D. Eur. J. Org. Chem., 2002, 2002(18): 3075-3098
[68] Schmaltz B, Rouhanipour A, Räder H J, Pisula W, Müllen K. Angew. Chem., 2009, 121 (4): 734-738
[69] Pan G B, Cheng X H, Höger S, Freyland W. J. Am. Chem. Soc., 2006, 128 (13): 4218-4219
[70] Tahara K, Lei S, Mössinger D, Kozuma H, Inukai K, Van der Auweraer M, De Schryver F C, Höger S, Tobe Y, De Feyter S. Chem. Commun., 2008, 2008 (33): 3897-3899
[71] Mena-Osteritz E, Bäuerle P. Adv. Mater., 2006, 18 (4): 447-451
[72] Chen T, Pan G B, Wettach H, Fritzsche M, Höger S, Wan L J, Yang H B, Northrop B H, Stang P J. J. Am. Chem. Soc., 2010, 132 (4): 1328-1333
[73] Kudernac T, Shabelina N, Mamdouh W, Höger S, De Feyter S. Beilstein J. Nanotechnol., 2011, 2: 674-680
[74] Borissov D, Ziegler A, Höger S, Freyland W. Langmuir, 2004, 20 (7): 2781-2784
[75] Lei S B, Tahara K, Feng X L, Furukawa S, De Schryver F C, Müllen K, Tobe Y, De Feyter S. J. Am. Chem. Soc., 2008, 130 (22): 7119-7129
[76] Tahara K, Johnson C A Ⅱ, Fujita T, Sonoda M, De Schryver F C, De Feyter S, Haley M M, Tobe Y. Langmuir, 2007, 23 (20): 10190-10197
[77] Tahara K, Okuhata S, Adisoejoso J, Lei S B, Fujita T, De Feyter S, Tobe Y. J. Am. Chem. Soc., 2009, 131 (48): 17583-17590
[78] Tahara K, Furukawa S, Uji-i H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver F C, De Feyter S, Tobe Y. J. Am. Chem. Soc., 2006, 128 (51): 16613-16625
[79] Lei S B, Tahara K, Müllen K, Szabelski P, Tobe Y, De Feyter S. ACS Nano, 2011, 5 (5): 4145-4157
[80] Furukawa S, Uji-i H, Tahara K, Ichikawa T, Sonoda M, De Schryver F C, Tobe Y, De Feyter S. J. Am. Chem. Soc., 2006, 128 (11): 3502-3503
[81] Jester S, Shabelina N, Le Blanc S M, Höger S. Angew. Chem. Int. Ed., 2010, 49 (35): 6101-6105
[82] Tahara K, Lei S B, Mamdouh W, Yamaguchi Y, Ichikawa T, Uji-i H, Sonoda M, Hirose K, De Schryver F C, De Feyter S, Tobe Y. J. Am. Chem. Soc., 2008, 130 (21): 6666-6667
[83] Lei S B, Surin M, Tahara K, Adisoejoso J, Lazzaroni R, Tobe Y, De Feyter S. Nano Lett., 2008, 8 (8): 2541-2546
[84] Furukawa S, Tahara K, De Chryver F C, Van der Auweraer M, Tobe Y, De Feyter S. Angew. Chem. Int. Ed., 2007, 46 (16): 2831-2834
[85] Bléger D, Kreher D, Mathevet F, Attias A, Schull G, Huard A, Douillard L, Fiorini-Debuischert C, Charra F. Angew. Chem. Int. Ed., 2007, 46 (39): 7404-7407
[86] Ziegler A, Mamdouh W, Heyen A V, Surin M, Uji-i H, Abdel-Mottaleb M M S, De Schryver F C, De Feyter S, Lazzaroni R, Höger S. Chem. Mater., 2005, 17 (23): 5670-5683
[87] Mamdouh W, Uji-i H, Dulcey A E, Percec V, De Feyter S, De Schryver F C. 2004, 20(18): 7678-7685
[88] Tahara K, Balandina T, Furukawa S, De Feyter S, Tobe Y. Cryst. Eng. Commun., 2011, 13 (18): 5551-5558
[89] Piot L, Bonifazi D, Samoì P. Adv. Funct. Mater., 2007, 17 (18): 3689-3693
[90] De Feyter S, De Schryver F C. J. Phys. Chem. B, 2005, 109 (10): 4290-4302
[91] Lei S B, Wang C, Yin S X, Wang H N, Xi F, Liu H W, Xu B, Wan L J, Bai C L. J. Phys. Chem. B, 2001, 105 (44): 10838-10841
[92] Lei S B, Tahara K, De Schryver F C, Van der Auweraer M, Tobe Y, De Feyter S. Angew. Chem. Int. Ed., 2008, 47 (16): 2964-2968
[93] Mamdouh W, Uji-i H, Ladislaw J S, Dulcey A E, Percec V, De Schryver F C, De Feyter S. J. Am. Chem. Soc., 2005, 128 (1): 317-325
[94] Ouahabi A A, Baxter P N W, Gisselbrecht J, De Cian A, Brelot L, Kyritsakas-Gruber N. J. Org. Chem., 2009, 74 (13): 4675-4689
[95] Tahara K, Fujita T, Sonoda M, Shiro M, Tobe Y. J. Am. Chem. Soc., 2008, 130 (43): 14339-14345
[96] Zhao T Y, Liu Z X, Song Y B, Xu W, Zhang D Q, Zhu D B. J. Org. Chem., 2006, 71 (19): 7422-7432
[97] Spitler E L, Haley M M. Tetrahedron, 2008, 64 (50): 11469-11474
[98] Traber B, Oeser T, Gleiter R. Eur. J. Org. Chem., 2005, 2005(7): 1283-1292
[99] Rahman M J, Yamakawa J, Matsumoto A, Enozawa H, Nishinaga T, Kamada K, Iyoda M. J. Org. Chem., 2008, 73 (14): 5542-5548
[100] Chan J M W, Tischler J R, Kooi S E, Bulovic V, Swager T M. J. Am. Chem. Soc., 2009, 131 (15): 5659-5666
[101] Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend R H, MacKenzie J D. Science, 2001, 293 (5532): 1119-1122
[102] Boden N, Bushby R J, Clements J, Movaghar B. J. Mater. Chem., 1999, 9 (9): 2081-2086
[103] Adam D, Schuhmacher P, Simmerer J, Haussling L, Siemensmeyer K, Etzbachi K H, Ringsdorf H, Haarer D. Nature, 1994, 371 (6493): 141-143
[104] Kumar S, Varshney S K. Angew. Chem. Int. Ed., 2000, 39 (17): 3140-3142
[105] Salonen L M, Ellermann M, Diederich F. Angew. Chem. Int. Ed., 2011, 50 (21): 4808-4842
[106] Nobukuni H, Kamimura T, Uno H, Shimazaki Y, Naruta Y, Tani F. Bull. Chem. Soc. Japan, 2011, 84 (12): 1321-1328
[107] Canevet D, Pérez E M, Martín N. Angew. Chem. Int. Ed., 2011, 50 (40): 9248-9259
[108] Kalsani V, Ammon H, Jäckel F, Rabe J P, Schmittel M. Chem. Eur. J., 2004, 10 (21): 5481-5492
[109] Kawase T, Kurata H. Chem. Rev., 2006, 106 (12): 5250-5273
[110] Li S N, Moorefield C N, Wang P S, Shreiner C D, Newkome G R. Eur. J. Org. Chem., 2008, 2008(19): 3328-3334
[111] Song H, Kirmaier C, Schwartz J K, Hindin E, Yu L H, Bocian D F, Lindsey J S, Holten D. J. Phys. Chem. B, 2006, 110 (39): 19121-19130
[112] Tobe Y, Utsumi N, Nagano A, Sonoda M, Naemura K. Tetrahedron, 2001, 57 (38): 8075-8083
[113] Youngs W J, Tessier C A, Bradshaw J D. Chem. Rev., 1999, 99 (11): 3153-3180
[114] Baxter P N W. Chem. Eur. J., 2003, 9 (11): 2531-2541
[115] Baxter P N W, Dali-Youcef R. J. Org. Chem., 2005, 70 (13): 4935-4953
[116] Baxter P N W. J. Org. Chem., 2004, 69 (6): 1813-1821
[117] Baxter P N W, Al Ouahabi A, Gisselbrecht J, Brelot L, Varnek A. J. Org. Chem., 2011, 77 (1): 126-142
[118] Yamaguchi Y, Kobayashi S, Miyamura S, Okamoto Y, Wakamiya T, Matsubara Y, Yoshida Z. Angew. Chem. Int. Ed., 2004, 43 (3): 366-369
[119] Zang L, Che Y K, Moore J S. Acc. Chem. Res., 2008, 41 (12): 1596-1608
[120] Couet J, Biesalski M. Soft Matter, 2006, 2 (12): 1005-1014
[121] Kim F S, Ren G, Jenekhe S A. Chem. Mater., 2011, 23 (3): 682-732
[122] Jin Y H, Zhang A B, Huang Y S, Zhang W. Chem. Commun., 2010, 46 (43): 8258-8260
[123] Helsel A J, Brown A L, Yamato K, Feng W, Yuan L H, Clements A J, Harding S V, Szabo G, Shao Z F, Gong B. J. Am. Chem. Soc., 2008, 130 (47): 15874-15875
[124] Song Y B, Di C A, Xu W, Liu Y Q, Zhang D Q, Zhu D B. J. Mater. Chem., 2007, 17 (42): 4483-4491
[125] Ono K, Ezaka S, Higashibata A, Hosokawa R, Ohkita M, Saito K, Suto M, Tomura M, Matsushita Y, Naka S, Okada H, Onnagawa H. Macromol. Chem. Phys., 2005, 206 (15): 1576-1582
[126] Ono K, Tsukamoto K, Hosokawa R, Kato M, Suganuma M, Tomura M, Sako K, Taga K, Saito K. Nano Lett., 2009, 9 (1): 122-125
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
阅读次数
全文


摘要

芳炔大环的结构与超分子性质