English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1696-1706 前一篇   后一篇

• 综述与评论 •

甲烷与二氧化碳催化重整制取合成气催化剂

王莉, 敖先权*, 王诗瀚   

  1. 贵州大学化学与化工学院 贵阳 550025
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 敖先权 E-mail:aoxianquan@163.com
  • 基金资助:

    贵州省自然科学基金项目(黔科合J字[2009]2239号)和贵州大学引进人才基金项目(贵大人基合字[2008]022号)资助

Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas

Wang Li, Ao Xianquan, Wang Shihan   

  1. School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
甲烷自然资源丰富,并且也可利用生物质通过发酵制备,而将甲烷与二氧化碳催化重整制取合成气是同时利用两种温室气体的一条有效途径,对清洁能源和环保具有重大意义。近年来,由于该方法与其他技术相比具有较大优势,催化剂、反应机理及一些非常规手段的研究引起了科学界广泛关注。本文概述了近几年来甲烷与二氧化碳催化重整催化剂的活性组分、载体、助催化剂、催化剂积炭行为及制备方法等研究新进展,归纳了影响催化剂抗积炭能力的因素,重点介绍了负载型双金属催化剂、复合氧化物催化剂、介孔型催化剂、金属氧化物载体的活性及稳定性,催化剂制备方法对催化活性和抗积炭能力的影响,催化剂抗积炭方法及等离子体技术的应用等研究,包括普遍认为反应主要受到表面氧原子、表面氢原子与催化剂表面活性位三者影响的反应机理,并展望了双金属催化剂、钙钛矿型催化剂、介孔型催化剂及等离子体协同催化技术的应用及催化机理的研究等发展前景。
The natural resources of methane are abundant,and methane also can be produced from biomass by fermentation process. It is an effective way to use two kinds of greenhouse gases simultaneously through preparation of synthesis gas by CH4-CO2 catalytic reforming, so this technique has a great significance to clean energy and environment protection. In recent years, a great attention has been paid to the catalysts, reaction mechanism and some unconventional means of this process due to their greater advantages compared to other methane conversion techniques. The recent studies in catalysts of this process including catalytic active components, supports,additives, carbon deposition of catalyst and catalyst preparation methods are reviewed in this paper. A series of influencing factors in the resistance to carbon deposition are summarized. The emphasis is on the activity and stability of supported bimetallic catalysts, metal composite oxide catalysts and metal oxide carrier, the influence of preparation methods on catalytic activity and the resistance to carbon deposition, as well as the method of catalyst resistance to carbon deposition and the plasma technologies for CH4-CO2 reforming. The reaction mechanism most researchers considered that the reaction process is principally affected by the surface oxygen atoms, surface hydrogen atoms and the catalyst surface actives, is introduced. Finally, the development trend and future prospects of the bimetallic catalysts, the perovskite type catalysts, the mesoporous type catalysts, the plasma synergetic catalysis technology and the study on the mechanism are given. Contents 1 Introduction
2 Catalysts
2.1 Loaded catalysts
2.2 Metal composite oxide catalysts
2.3 Carbide catalysts
2.4 Mesoporous catalysts
2.5 Preparation methods and conditions of catalysts
2.6 Resistance to carbon deposition
3 Plasma technologies for CH4-CO2 reforming
3.1 CH4-CO2 reforming by plasma
3.2 Plasma synergetic catalysis technology
3.3 Catalyst preparation by plasma
4 Mechanisms
5 Conclusion and outlook

中图分类号: 

()
[1] Sun L Z, Tan Y S, Zhang Q D, Xie H J, Han Y Z. Int. J. Hyd. Energ., 2011, 36: 12259-12267
[2] Lau C S, Tsolakis A M L. Int. J. Hyd. Energ., 2011, 36: 397-404
[3] Shiratori Y, Ijichi T, Oshima T, Sasaki K. Int. J. Hyd. Energ., 2010, 35: 7905-7912
[4] Amini H R, Reinhart D R. Waste Manage, 2011, 31: 2020-2026
[5] Bermúdez J M, Fidalgo B, Arenillas A, Menéndez J A. Fuel, 2012, 94: 197-203
[6] Endo T, KajiyaY, Nagayasu H, Iijima M, Ohishi T, Tanaka H, Mitchell R. Energy Procedia, 2011, 4: 1513-1519
[7] Shu J F, Chen X J, Chou I M, Yang W G, Hu J Z, Hemley R J, Mao H. Geosci. Frontiers, 2011, 2: 93-100
[8] Wagar W R, Zamfirescu C, Dincer I. Int. J. Hyd. Energ., 2011, 36: 7002-7011
[9] 敖先权(Ao X Q), 王华(Wang H), 魏永刚(Wei Y G). 太阳能学报(Acta Energiae Solaris Sinica), 2008, 25(12): 1528-1532
[10] 桑丽霞(Sang L X), 孙彪(Sun B), 李艳霞(Li Y X), 吴玉庭(Wu Y T), 马重芳(Ma C F). 化学进展(Prog. Chem. ), 2011, 23(11): 2233-2239
[11] Edwards J H, Maitra A M. Fuel Process. Technol., 1995, 42: 269-289
[12] Rostrupnielsen J R, Hansen J H B. J. Catalysis, 1993, 144: 38- 49
[13] Ferreira-Aparicio P, Guerrero-Ruiz A, guez-Ramos I R. Appl. Catal. A-Gen., 1998, 170: 177-187
[14] Tang S B, Qiu F L, Lu S J. Catal. Today, 1995, 24: 253-255
[15] Wang H Y, Au C T. Appl. Catal. A-Gen., 1997, 155: 239-252
[16] Wang S B, Lu G Q. Appl. Catal. A-Gen., 1998, 169: 271-280
[17] García-Diéguez M, Finocchio E, Larrubia M A, Alemany L J, Busca G. J. Catalysis, 2010, 274: 11-20
[18] García-Diéguez M, Pieta I S, Herrera M C, Larrubia M A, Alemany L J. J. Catalysis, 2010, 270: 136-145
[19] Meshkani F, Rezaei M. Int. J. Hyd. Energ., 2010, 35: 10295- 10301
[20] Liu D P, Cheo W N E, Lim Y W Y, Borgna A, Lau R, Yang Y H. Catal. Today, 2010, 154: 229-236
[21] Ocsachoque M, Pompeo F, Gonzalez G. Catal. Today, 2011, 172: 226-231
[22] Özkara-Aydíno lu S, Aksoylu A E. Int. J. Hyd. Energ., 2011, 36: 2950-2959
[23] Huang T, Huang W, Huang J, Ji P. Fuel Proc. Technol., 2011, 92: 1868-1875
[24] Fan M S, Abdullah A Z, Bhatia S. Appl. Catal. B Environ., 2010, 100: 365-377
[25] Steinhauer B, Kasireddy M R, Radnik J, Martin A. Appl. Catal. A-Gen., 2009, 366: 333-341
[26] Liu D P, Quek X Y, Cheo W N E, Lau R, Borgna A, Yang Y H. J. Catalysis, 2009, 266: 380-390
[27] Meshkani F, Rezaei M. Catal. Commun., 2011, 12: 1046-1050
[28] Asencios Y J O, Bellido J D A, Assaf E M. Appl. Catal. A-Gen., 2011, 397: 138-144
[29] Chen J X, Yao C C, Zhao Y Q, Jia P H. Int. J. Hyd. Energ., 2010, 35: 1630-1642
[30] García-Diéguez M, Pieta I S, Herrera M C, Larrubia M A, Malpartida I, Alemany L J. Catal. Today, 2010, 149: 380-387
[31] Rezaei M, Alavi S M, Sahebdelfar S, Yan Z F. Scripta Mater., 2009, 61: 173-176
[32] Tao K, Zhang Y, Terao S, Tsubaki N. Catal. Today, 2010, 153: 150-155
[33] Tao K, Zhang Y, Terao S, Yoneyama Y, Kawabata T, Matsuda K, Ikeno S, Tsubaki N. Chem. Engn. J., 2011, 170: 258-263
[34] Rivas I, Alvarez J, Pietri E, Pérez-Zurita M J, Goldwasser M R. Catal. Today, 2010, 149: 388-393
[35] Reddy G K, Loridanta S, Takahashi A, Delichère P, Reddy B M. Appl. Catal. A-Gen., 2010, 389: 92-100
[36] Kambolis A, Matralis H, Trovarelli A, Papadopoulou C. Appl. Catal. A-Gen., 2010, 377: 16-26
[37] Pietraszek A, Koubaissy B, Roger A C, Kiennemann A. Catal. Today, 2011, 176: 267-271
[38] Frontera P, Macariob A, Aloise A, Crea F, Antonucci P L, Nagy J B, Frusteri F, Giordano G. Catal. Today, 2012, 179: 52-60
[39] Gamba O, Moreno S, Molina R. Int. J. Hyd. Energ., 2011, 36: 1540-1550
[40] Fidalgo B, Zubizarreta L, Bermúdez J M, Arenillas A, Menéndez J A. Fuel Proc. Technol., 2010, 91: 765-769
[41] Soloviev S O, Kapran A Y, Orlyk S N, Gubareni E V. J. Nat. Gas Chem., 2011, 20: 184-190
[42] Pinheiro A L, Pinheiro A N, Valentini A, Filho J M, Sousa F F, Sousa J R, Rocha M G C, Bargiela P, Oliveira A C. Catal. Commun., 2009, 11: 11-14
[43] Damyanova S, Pawelec B, Arishtirova K, Fierro J L G. Int. J. Hyd. Energ., 2011, 36: 10635-10647
[44] 郎宝(Lang B), 李秀金(Li X J), 季生福(Ji F S), Fabien H, 李成岳(Li C Y). 物理化学学报(Acta Physico- Chimica Sinica), 2009, 25(8): 1611-1617
[45] Zhu J Q, Peng X X, Yao L, Shen J, Tong D M, Hu C W. Int. J. Hyd. Energ., 2011, 36: 7094-7104
[46] 徐军科(Xu J K), 任克威(Ren K W), 王晓蕾(Wang X L), 周伟(Zhou W), 潘相敏(Pan X M), 马建新(Ma J X). 物理化学学报(Acta Physico-Chimica Sinica), 2008, 24 (9): 1568-1572
[47] Foo S Y, Cheng C K, Nguyen T H, Adesina A A. Catal. Today, 2011, 164: 221-226
[48] Daza C E, Gallego J, Mondragón F, Moreno S, Molina R. Fuel, 2010, 89: 592-603
[49] Özkara-Aydíno lu S, Aksoylu A E. Catal. Commun., 2010, 11: 1165-1170
[50] Daza C E, Moreno S, Molina R. Int. J. Hyd. Energ., 2011, 36: 3886-3894
[51] Nagaraja B M, Bulushev D A, Beloshapkin S, Ross J R H. Catal. Today, 2011, 178: 132-136
[52] José-Alonso D S, Illán-Gómez M J, Román-Martínez M C. Catal. Today, 2011, 176: 187-190
[53] García V, Fernández J J, Ruíz W, Mondragón F, Moreno A. Catal. Commun., 2009, 11: 240-246
[54] Yasyerli S, Filizgok S, Arbag H, Yasyerli N, Dogu G. Int. J. Hyd. Energ, 2011, 36: 4863-4874
[55] Sutthiumporn K, Kawi S. Int. J. Hyd. Energ., 2011, 36: 14435-14446
[56] García-Diéguez M, Herrera M C, Pieta I S, Larrubia M A, Alemany L J. Catal. Commun., 2010, 11: 1133-1136
[57] Al-Fatesh A S A, Fakeeha A H, Abasaeed A E. Chin. J. Catal., 2011, 32: 1604-1609
[58] Wang N, Chu W, Huang L Q, Zhang T. J. Nat. Gas Chem., 2010, 19: 117-122
[59] Wang N, Chu W, Zhang T, Zhao X S. Chem. Eng. J., 2011, 170: 457-463
[60] Kapokova L, Pavlova S, Bunina R, Alikina G, Krieger T, Ishchenko A, Rogov V, Sadykov V. Catal. Today, 2011, 164: 227-233
[61] Gaur S, Haynes D J, Spivey J J. Appl. Catal. A-Gen., 2011, 403: 142-151
[62] Cheng J M, Huang W. Fuel Process. Technol., 2010, 91: 185-193
[63] Hirose T, Ozawa Y, Nagai M. Chin. J. Catal., 2011, 32: 771-776
[64] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerck U. Appl. Catal. B Environ., 2012, 113/114: 19-30
[65] Liu D P, Lau R, Borgna A, Yang Y H. Appl. Catal. A-Gen., 2009, 358: 110-118
[66] Xu L L, Song H L, Chou L J. Appl. Catal. B Environ., 2011, 108/109: 177-190
[67] Shen W H, Momoi H, Komatsubara K, Saito T, Yoshida A, Naito S. Catal. Today, 2011, 171: 150-155
[68] Newnham J, Mantri K, Amin M H, Tardio J, Bhargava S K. Int. J. Hyd. Energ., 2012, 37: 1454-1464
[69] Liu D P, Quek X Y, Wah H H A, Zeng G G, Li Y D, Yang Y H. Catal. Today, 2009, 148: 243-250
[70] Quek X Y, Liu D P, Cheo W N E, Wang H, Chen Y, Yang Y H. Appl. Catal. B-Environ., 2010, 95: 374-382
[71] Sun N N, Wen X, Wang F, Peng W C, Zhao N, Xiao F K, Wei W, Sun Y H, Kang J T. Appl. Surf. Sci., 2011, 257: 9169-9176
[72] Kang K M, Kima H W, Shim I W, Kwak H Y. Fuel Process. Technol., 2011, 92: 1236-1243
[73] García-Diéguez M, Pieta I S, Herrera M C, Larrubia M A, Alemany L J. Appl. Catal. A-Gen., 2010, 377: 191-199
[74] Arbag H, Yasyerli S, Yasyerli N, Dogu G. Int. J. Hyd. Energ., 2010, 35: 2296-2304
[75] Zhang A J, Zhu A M, Chen B B, Zhang S H, Au C, Shi C. Catal. Commun., 2011, 12: 803-807
[76] Gonzalez-Delacruz V M, Ternero F, Pereñíguez R, Caballero A, Holgado J P. Appl. Catal. A-Gen., 2010, 384: 1-9
[77] Juan-Juan J, Román-Martínez M C, Illán-Gómez M J. Appl. Catal. A-Gen., 2009, 355: 27-32
[78] Nikoo M K, Amin N A S. Fuel Process. Technol., 2011, 92: 678-691
[79] Arkatova L A. Catal. Today, 2010, 157: 170-176
[80] Guczi L, Stefler G, Geszti O, Sajó I, Pászti Z, Tompos A, Schay Z. Appl. Catal. A-Gen., 2010, 375: 236-246
[81] 张轲(Zhang K), 周广栋(Zhou G D), 李菁(Li J), 程铁欣(Cheng T X). 催化学报(Chinese J. Catal.), 2010, 31(3): 343-347
[82] Horváth A, Stefler G, Geszti O, Kienneman A, Pietraszek A, Guczi L. Catal. Today, 2011, 169: 102-111
[83] Pholjaroen B, Laosiripojana N, Praserthdam P,Assabumrungrat S. J. Ind. Eng. Chem., 2009, 15: 488-497
[84] Assabumrungrat S, Charoenseri S, Laosiripojana N, Kiatkittipong W, Praserthdam P. Int. J. Hyd. Energ., 2009, 34: 6211-6220
[85] Moniri A, Alavi S M, Rezaei M. J. Nat. Gas Chem., 2010, 19: 638-641
[86] Li X, Bai M G, Tao X M, Shang S Y, Yin Y X, Dai X Y. J. Fuel Chem. Technol., 2010, 38: 195-200
[87] Li D H, Li X, Yin Y X, Tao X M, Shang S Y, Dai X Y. Int. J. Hyd. Energ., 2009, 34: 308-313
[88] Ghorbanzadeh A M, Lotfalipour R, Rezaei S. Int. J. Hyd. Energ., 2009, 34: 293-298
[89] 颜彬航(Yan B H), 王琦(Wang Q), 金涌(Jin Y), 程易(Cheng Y). 化工学报(CIESC Jounal), 2010, 61(11): 2919-2923
[90] Ni G H, Lan Y, Cheng C, Meng Y D, Wang X K.  Int. J. Hyd. Energ., 2011, 36: 12869-12876
[91] 张安杰(Zhang A J), 丁天英(Ding T Y), 刘云(Liu Y), 石川(Shi C). 分子催化(J. Mol. Catal. (China)), 2011, 25(1): 11-16
[92] Wang Q, Shi H L, Yan B H, Jin Y, Cheng Y. Int. J. Hyd. Energ., 2011, 36: 8301-8306
[93] 柴晓燕(Chai X Y), 尚书勇(Shang S Y), 刘改焕(Liu G H), 陶旭梅(Tao X M), 李祥(Li X), 白玫瑰(Bai M G), 戴晓雁(Dai X Y), 印永祥(Yin Y X). 催化学报(Chin. J. Catal.), 2010, 31(3): 353-359
[94] Qin P, Xu H Y, Long H L, RanY, Shang S Y, Yin Y X, Dai X Y. J. Nat. Gas Chem., 2011, 20: 487-492
[95] Shang S Y, Liu G H, Chai X Y, Tao X M, Li X, Bai M G, Chu W, Dai X Y, Zhao Y X, Yin Y X. Catal. Today, 2009, 148: 268-274
[96] Hua W, Jin L J, He X F, Liu J H, Hu H Q. Catal. Commun., 2010, 11: 968-972
[97] Efstathiou A M, Kladi A, Tsipouriari V A, Verykios X E. J. Catal., 1996, 158: 64-75
[98] Qian L P, Ren Y, Yu H, Wang Y, Yue B, He H Y. Appl. Catal. A-Gen., 2011, 401: 114-118
[99] 徐军科(Xu J K), 沈利红(Shen L H), 周伟(Zhou W), 马建新(Ma J X). 物理化学学报(Acta Physico-Chimica Sinica), 2011, 27(3): 697-704
[100] McGuire N E, Sullivan N P, Deutschmann O, Zhu H Y, Kee R J. Appl. Catal. A-Gen., 2011, 394: 257-265
[101] Sadykov V A, Gubanova E L, Sazonova N N, Pokrovskaya S A, Chumakova N A, Mezentseva N V, Bobin A S, Gulyaev R V, Ishchenko A V, Krieger T A, Mirodatos C. Catal. Today, 2011, 171: 140-149
[102] Moradi G R, Rahmanzadeh M, Sharifnia S. Chem. Eng. J., 2010, 162: 787-791
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[10] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[15] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.