中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1535-1546 DOI: 10.7536/PC200304 Previous Articles   Next Articles

Atmospheric Chemistry of Nitryl Chloride

Haichao Wang1, Mingjin Tang2, Zhaofeng Tan3, Chao Peng2, Keding Lu1,**()   

  1. 1. State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
    2. State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Contact: Keding Lu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(41907185); National Natural Science Foundation of China(91744204); National Natural Science Foundation of China(21976006); National Key Research and Development Program of China(2018YFC0213901); China Postdoctoral Science Foundation(2018M641095); China Postdoctoral Science Foundation(2019T120023)
Richhtml ( 31 ) PDF ( 1044 ) Cited
Export

EndNote

Ris

BibTeX

As an important reactive trace gases in the troposphere, nitryl chloride (ClNO2) has significant impacts on atmospheric oxidation capacity, the degradation of primary pollutants and the formation of secondary pollutants, and plays indispensable roles in global cycles of both nitrogen and chlorine. In this paper, we introduce basic properties of ClNO2 as well as its formation and removal mechanisms in the troposphere, and describe in brief techniques currently used in laboratory and field work to measure ClNO2. In addition, we review spatial and temporal distributions of tropospheric ClNO2 over the globe as reported in the last 10~20 years, discuss in a systematical manner chemical mechanisms and environmental factors which determine its heterogeneous formation in the atmosphere via critical analysis of important results from laboratory studies and field measurements, and summarize impacts of ClNO2 on chlorine radicals, atmospheric oxidation capacity as well as the formation of O3 and nitrate aerosol. We emphasize that ClNO2 couples gas phase chemistry and heterogeneous chemistry, and also couples nocturnal atmospheric chemistry with daytime photochemistry, thus very likely playing an important role in the formation of air pollution complex in China. Important questions which remain to be answered to better understand atmospheric chemistry of ClNO2 are outlined at the end, and we also discuss in brief how these questions can be addressed in future work.

Contents

1 Introduction

2 Source and sink of ClNO2

2.1 Source

2.2 Sink

3 Measurement techniques of ClNO2

3.1 Direct measurement technique

3.2 Indirect measurement technique

3.3 Calibration

4 ClNO2 distribution and its environmental impacts

4.1 Spatial and temporal distribution

4.2 ClNO2 formation and yield

4.3 Environmental impacts

5 Conclusion and outlook

Fig.1 The framework of atmospheric chemistry of ClNO2 (the equations inserted describe formation mechanisms of ClNO2 via heterogeneous reactions)
Fig.2 Absorption cross sections (200~500 nm) of ClNO2 and Cl2
Fig.3 The dependence of signal intensities of IClNO2- on the partial pressure of H2O[22]
Table 1 Summary of the results of field observations of ClNO2 concentration and ClNO2 yield reported in the literatures
Fig.4 A case of diurnal variation of ClNO2 in field observation in summer Beijing
Fig.5 A case of vertical profile of ClNO2 in field observation[40]
Fig.6 (a) The efficiency of conversion of N2O5 to ClNO2 as a function of substrate chloride concentration, and (b) the range of sub- and super-micron chloride concentrations measured during the TexAQS-GoMACCS 2006 field study in the Gulf of Mexico (original figure referred from[8], copyright: John Wiley and Sons)
Fig.7 The mean diurnal variation of the production rate of chloride radical via ClNO2 photolysis in summer Beijing, 2016[23]
Table 2 Summary of the campaign average daily peak of the chloride radical via ClNO2 photolysis reported in previous filed campaigns
[1]
方苗利(Miao M L), 杨振平(YangZ P), 孙莉(SunL), 高倩(GaoQ), 淘金海(Tao J H), 裴文(Pei W). 化工生产与技术 (Chemical Production and Technology), 2011,18:44.
[2]
Finlayson-Pitts B J, Ezell M J, Pitts J N. Nature, 1989,337:241.
[3]
Osthoff H D, Roberts J M, Ravishankara A R, Williams E J, Lerner B M, Sommariva R, Bates T S, Coffman D, Quinn P K, Dibb J E, Stark H, Burkholder J B, Talukdar R K, Meagher J, Fehsenfeld F C, Brown S S. Nat. Geosci, 2008,1:324. doi: 10.1038/ngeo177
[4]
Thornton J A, Kercher J P, Riedel T P, Wagner N L, Cozic J, Holloway J S, Dube W P, Wolfe G M, Quinn P K, Middlebrook A M, Alexander B, Brown S S. Nature, 2010,464:271.

pmid: 20220847
[5]
Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009,9:8351.
[6]
王海潮(Wang H C), 陈军(ChenJ), 陆克定(LuK D). 化学进展 (Prog. Chem.), 2015,27:963.
[7]
McNeill V F, Patterson J, Wolfe G M, Thornton J A. Atmos. Chem. Phys., 2006,6:1635. doi: 10.5194/acp-6-1635-2006
[8]
Roberts J M, Osthoff H D, Brown S S, Ravishankara A R, Coffman D, Quinn P, Bates T. Geophys. Res. Lett., 2009,36.
[9]
Mitroo D, Gill T E, Haas S, Pratt K A, Gaston C J. Environ. Sci. Technol, 2019,53:7442.

pmid: 31117541
[10]
Leu M T, Int. J. Chem. Kinet., 1984,16:1311.
[11]
Chang C T, Liu T H, Jeng F T. Environ. Res, 2004,94:67. doi: 10.1016/j.envres.2003.07.008

pmid: 14643288
[12]
Ghosh B, Papanastasiou D K, Talukdar R K, Roberts J M, Burkholder J B. J. Phys. Chem. A, 2012,116:5796.

pmid: 21936506
[13]
Wang T, Tham Y J, Xue L K, Li Q Y, Zha Q Z, Wang Z, Poon S C N, Dube W P, Blake D R, Louie P K K, Luk C W Y, Tsui W, Brown S S. J. Geophys. Res-Atmos., 2016,121:2476.
[14]
Wang H C, Lu K D, Chen X R, Zhu Q D, Chen Q, Guo S, Jiang M Q, Li X, Shang D J, Tan Z F, Wu Y S, Wu Z J, Zou Q, Zheng Y, Zeng L M, Zhu T, Hu M, Zhang Y H. Environ. Sci. Tech. Let., 2017,4:416.
[15]
Roberts J M, Osthoff H D, Brown S S, Ravishankara A R. Science, 2008,321:1059.

pmid: 18599742
[16]
Ganske J A, Ezell M J, Berko H N, Finlaysonpitts B J. Chem. Phys. Lett., 1991,179:204.
[17]
Lu K D, Guo S, Tan Z F, Wang H C, Shang D J, Liu Y H, Li X, Wu Z J, Hu M, Zhang Y H. Natl. Sci. Rev, 2019,6:579.
[18]
Livingston F E, Finlaysonpitts B J. Geophys. Res. Lett., 1991,18:17.
[19]
De Laeter J R, Bohlke J K, De Bievre P, Hidaka H, Peiser H S, Rosman K J R, Taylor P D P. Pure Appl. Chem., 2003,75:683.
[20]
Thornton J A, Abbatt J P D. J Phys Chem A, 2005,109:10004.

pmid: 16838918
[21]
Eger P G, Helleis F, Schuster G, Phillips G J, Lelieveld J, Crowley J N. Atmos. Meas. Tech, 2019,12:1935.
[22]
Kercher J P, Riedel T P, Thornton J A. Atmos. Meas. Tech, 2009,2:193.
[23]
Le Breton M, Hallquist A M, Pathak R K, Simpson D, Wang Y J, Johansson J, Zheng J, Yang Y D, Shang D J, Wang H C, Liu Q Y, Chan C, Wang T, Bannan T J, Priestley M, Percival C J, Shallcross D E, Lu K D, Guo S, Hu M, Hallquist M. Atmos. Chem. Phys., 2018,18:13013.
[24]
Tham Y J, Wang Z, Li Q Y, Yun H, Wang W H, Wang X F, Xue L K, Lu K D, Ma N, Bohn B, Li X, Kecorius S, Gross J, Shao M, Wiedensohler A, Zhang Y H, Wang T. Atmos. Chem. Phys., 2016,16:14959.
[25]
Mielke L H, Furgeson A, Odame-Ankrah C A, Osthoff H D. Can. J. Chem., 2015,94:414.
[26]
Thaler R D, Mielke L H, Osthoff H D. Anal. Chem, 2011,83:2761.

pmid: 21391546
[27]
Behnke W, George C, Scheer V, Zetzsch C. J. Geophys. Res-Atmos., 1997,102:3795.
[28]
Johnston H S, Leighton F. J. Am. Chem. Soc., 1953,75:3612.
[29]
Flood H, Forland T. Acta Chem. Scand., 1947,1:592.
[30]
Wang H, Lu K, Guo S, Wu Z, Shang D, Tan Z, Wang Y, Le Breton M, Lou S, Tang M, Wu Y, Zhu W, Zheng J, Zeng L, Hallquist M, Hu M, Zhang Y. Atmos. Chem. Phys., 2018,18:9705.
[31]
Bannan T J, Booth A M, Bacak A, Muller J B A, Leather K E, Le Breton M, Jones B, Young D, Coe H, Allan J, Visser S, Slowik J G, Furger M, Prevot A S H, Lee J, Dunmore R E, Hopkins J R, Hamilton J F, Lewis A C, Whalley L K, Sharp T, Stone D, Heard D E, Fleming Z L, Leigh R, Shallcross D E, Percival C J. J. Geophys. Res-Atmos., 2015,120:5638.
[32]
Faxon C B, Bean J K, Hildebrandt Ruiz L. Atmosphere-Basel, 2015,6:1487.
[33]
Mielke L H, Furgeson A, Osthoff H D. Environ. Sci. Technol, 2011,45:8889. doi: 10.1021/es201955u

pmid: 21877701
[34]
王海潮(Wang H C), 陆克定(Lu K D). 化学进展 (Progress in Chemistry), 2016,28:917.
[35]
Chang W L, Bhave P V, Brown S S, Riemer N, Stutz J, Dabdub D. Aerosol. Sci. Tech, 2011,45:665.
[36]
Zhou W, Zhao J, Ouyang B, Mehra A, Xu W Q, Wang Y Y, Bannan T J, Worrall S D, Priestley M, Bacak A, Chen Q, Xie C H, Wang Q Q, Wang J F, Du W, Zhang Y J, Ge X L, Ye P L, Lee J D, Fu P Q, Wang Z F, Worsnop D, Jones R, Percival C J, Coe H, Sun Y L. Atmos. Chem. Phys., 2018,18:11581.
[37]
Wang X F, Wang H, Xue L K, Wang T, Wang L W, Gu R R, Wang W H, Tham Y J, Wang Z, Yang L X, Chen J M, Wang W X. Atmos. Environ., 2017,156:125.
[38]
Eger P G, Friedrich N, Schuladen J, Shenolikar J, Fischer H, Tadic I, Harder H, Martinez M, Rohloff R, Tauer S, Drewnick F, Fachinger F, Brooks J, Darbyshire E, Sciare J, Pikridas M, Lelieveld J, Crowley J N. Atmos. Chem. Phys., 2019,19:12121.
[39]
Phillips G J, Thieser J, Tang M J, Sobanski N, Schuster G, Fachinger J, Drewnick F, Borrmann S, Bingemer H, Lelieveld J, Crowley J N. Atmos. Chem. Phys., 2016,16:13231.
[40]
Bannan T J, Bacak A, Le Breton M, Flynn M, Ouyang B, McLeod M, Jones R, Malkin T L, Whalley L K, Heard D E, Bandy B, Khan M A H, Shallcross D E, Percival C J. J. Geophys. Res-Atmos., 2017,122:11154.
[41]
Bannan T J, Khan M A H, Le Breton M, Priestley M, Worrall S D, Bacak A, Marsden N A, Lowe D, Pitt J, Shallcross D E, Percival C J. Geophys. Res. Lett., 2019,46:8508.
[42]
Riedel T P, Wagner N L, Dube W P, Middlebrook A M, Young C J, Ozturk F, Bahreini R, VandenBoer T C, Wolfe D E, Williams E J, Roberts J M, Brown S S, Thornton J A. J. Geophys. Res-Atmos., 2013,118:8702.
[43]
Riedel T P, Bertram T H, Crisp T A, Williams E J, Lerner B M, Vlasenko A, Li S M, Gilman J, de Gouw J, Bon D M, Wagner N L, Brown S S, Thornton J A. Environ. Sci. Technol., 2012,46:10463.

pmid: 22443276
[44]
Mielke L H, Stutz J, Tsai C, Hurlock S C, Roberts J M, Veres P R, Froyd K D, Hayes P L, Cubison M J, Jimenez J L, Washenfelder R A, Young C J, Gilman J B, de Gouw J A, Flynn J H, Grossberg N, Lefer B L, Liu J, Weber R J, Osthoff H D. J. Geophys. Res-Atmos., 2013,118:10638.
[45]
Sommariva R, Hollis L D J, Sherwen T, Baker A R, Ball S M, Bandy B J, Bell T G, Chowdhury M N, Cordell R L, Evans M J, Lee J D, Reed C, Reeves C E, Roberts J M, Yang M X, Monks P S. Atmos. Sci. Lett., 2018, 19:.
[46]
Wang Z, Wang W H, Tham Y J, Li Q Y, Wang H, Wen L, Wang X F, Wang T. Atmos. Chem. Phys., 2017,17:12361.
[47]
Yun H, Wang W H, Wang T, Xia M, Yu C, Wang Z, Poon S C N, Yue D L, Zhou Y. Atmos. Chem. Phys., 2018,18:17515.
[48]
Wang H C, Lu K D, Guo S, Wu Z J, Shang D J, Tan Z F, Wang Y J, Le Breton M, Lou S R, Tang M J, Wu Y S, Zhu W F, Zheng J, Zeng L M, Hallquist M, Hu M, Zhang Y H. Atmos. Chem. Phys., 2018,18:9705.
[49]
Jeong D, Seco R, Gu D, Lee Y, Nault B A, Knote C J, McGee T, Sullivan J T, Jimenez J L, Campuzano-Jost P, Blake D R, Sanchez D, Guenther A B, Tanner D, Huey L G, Long R, Anderson B E, Hall S R, Ullmann K, Shin H, Herndon S C, Lee Y, Kim D, Ahn J, Kim S. Atmos. Chem. Phys., 2019,19:12779.
[50]
Osthoff H D, Odame-Ankrah C A, Taha Y M, Tokarek T W, Schiller C L, Haga D, Jones K, Vingarzan R. Atmos. Chem. Phys., 2018,18:6293.
[51]
Wagner N L, Riedel T P, Young C J, Bahreini R, Brock C A, Dube W P, Kim S, Middlebrook A M, Ozturk F, Roberts J M, Russo R, Sive B, Swarthout R, Thornton J A, VandenBoer T C, Zhou Y, Brown S S. J. Geophys. Res-Atmos., 2013,118:9331.
[52]
McDuffie E E, Fibiger D L, Dube W P, Lopez-Hilfiker F, Lee B H, Thornton J A, Shah V, Jaegle L, Guo H Y, Weber R J, Reeves J M, Weinheimer A J, Schroder J C, Campuzano-Jost P, Jimenez J L, Dibb J E, Veres P, Ebben C, Sparks T L, Wooldridge P J, Cohen R C, Hornbrook R S, Apel E C, Campos T, Hall S R, Ullmann K, Brown S S. J. Geophys. Res-Atmos., 2018,123:4345.
[53]
Young C J, Washenfelder R A, Roberts J M, Mielke L H, Osthoff H D, Tsai C, Pikelnaya O, Stutz J, Veres P R, Cochran A K, VandenBoer T C, Flynn J, Grossberg N, Haman C L, Lefer B, Stark H, Graus M, de Gouw J, Gilman J B, Kuster W C, Brown S S. Environ. Sci. Technol., 2012,46:10965. doi: 10.1021/es302206a

pmid: 23013316
[54]
McDuffie E E, Fibiger D L, Dube W P, Hilfiker F L, Lee B H, Jaegle L, Guo H Y, Weber R J, Reeves J M, Weinheimer A J, Schroder J C, Campuzano-Jost P, Jimenez J L, Dibb J E, Veres P, Ebben C, Sparks T L, Wooldridge P J, Cohen R C, Campos T, Hall S R, Ullmann K, Roberts J M, Thornton J A, Brown S S. J. Geophys. Res-Atmos., 2018,123:12994.
[55]
Morgan W T, Ouyang B, Allan J D, Aruffo E, Di Carlo P, Kennedy O J, Lowe D, Flynn M J, Rosenberg P D, Williams P I, Jones R, McFiggans G B, Coe H. Atmos. Chem. Phys., 2015,15:973.
[56]
Tham Y J, Wang Z, Li Q Y, Wang W H, Wang X F, Lu K D, Ma N, Yan C, Kecorius S, Wiedensohler A, Zhang Y H, Wang T. Atmos. Chem. Phys., 2018,18:13155.
[57]
Yu C, Wang Z, Xia M, Fu X, Wang W, Tham Y J, Chen T, Zheng P, Li H, Shan Y, Wang X, Xue L, Zhou Y, Yue D, Ou Y, Gao J, Lu K, Brown S S, Zhang Y, Wang T. Atmos. Chem. Phys. Discuss, 2019,2019:1.
[58]
Wahner A, Mentel T F, Sohn M, Stier J. J. Geophys. Res-Atmos., 1998,103:31103.
[59]
Mentel T F, Sohn M, Wahner A. Phys. Chem. Chem. Phys., 1999,1:5451.
[60]
Wagner N L, Riedel T P, Roberts J M, Thornton J A, Angevine W M, Williams E J, Lerner B M, Vlasenko A, Li S M, Dube W P, Coffman D J, Bon D M, de Gouw J A, Kuster W C, Gilman J B, Brown S S. J. Geophys. Res-Atmos., 2012,117.
[61]
Ryder O S, Campbell N R, Shaloski M, Al-Mashat H, Nathanson G M, Bertram T H. J. Phys. Chem. A, 2015,119:8519.

pmid: 26153795
[62]
Staudt S, Gord J R, Karimova N V, McDuffie E E, Brown S S, Gerber R B, Nathanson G M, Bertram T H. ACS Earth Space Chem., 2019,3:1987.
[63]
Phillips G J, Tang M J, Thieser J, Brickwedde B, Schuster G, Bohn B, Lelieveld J, Crowley J N. Geophys. Res. Lett., 2012,39.
[64]
Tham Y J, Yan C, Xue L K, Zha Q Z, Wang X F, Wang T. Chinese Sci. Bull., 2014,59:356.
[65]
Riedel T P, Wolfe G M, Danas K T, Gilman J B, Kuster W C, Bon D M, Vlasenko A, Li S M, Williams E J, Lerner B M, Veres P R, Roberts J M, Holloway J S, Lefer B, Brown S S, Thornton J A. Atmos. Chem. Phys., 2014,14:3789.
[66]
Sarwar G, Simon H, Bhave P, Yarwood G. Atmos. Chem. Phys., 2012,12:6455.
[67]
Li Q Y, Zhang L, Wang T, Tham Y J, Ahmadov R, Xue L K, Zhang Q, Zheng J Y. Atmos. Chem. Phys., 2016,16:14875.
[68]
Sarwar G, Simon H, Xing J, Mathur R. Geophys. Res. Lett., 2014,41:4050.
[69]
Qiu X H, Ying Q, Wang S, Duan L, Wang Y H, Lu K D, Wang P, Xing J, Zheng M, Zhao M J, Zheng H T, Zhang Y H, Hao J M. Sci. Total Environ., 2019,693:11.
[70]
Riedel T P, Bertram T H, Ryder O S, Liu S, Day D A, Russell L M, Gaston C J, Prather K A, Thornton J A. Atmos. Chem. Phys., 2012,12:2959.
[71]
Qiu X H, Ying Q, Wang S X, Duan L, Zhao J, Xing J, Ding D, Sun Y L, Liu B X, Shi A J, Yan X, Xu Q C, Hao J M. Atmos. Chem. Phys., 2019,19:6737.
[72]
楚碧武(Chu B W), 马庆鑫(MaQ X), 段凤魁(DuanF K), 马金珠(MaJ Z), 蒋靖坤(Jiang J K), 贺克斌(He K B), 贺泓(He H). 化学进展 (Progress in Chemistry), 2020,32:1.
[73]
Fu X, Wang T, Wang S X, Zhang L, Cai S Y, Xing J, Hao J M. Environ. Sci. Technol, 2018,52:1644. doi: 10.1021/acs.est.7b05030

pmid: 29376646
[74]
Xue L K, Saunders S M, Wang T, Gao R, Wang X F, Zhang Q Z, Wang W X. Geosci. Model. Dev, 2015,8:3151.
[75]
Shi B, Wang W G, Zhou L, Sun Z, Fan C C, Chen Y, Zhang W Y, Qiao Y Y, Qiao Y L, Ge M F. Atmos. Environ, 2020,222:1.
[76]
Haskins J D, Lee B H, Lopez-Hilifiker F D, Peng Q Y, Jaegle L, Reeves J M, Schroder J C, Campuzano-Jost P, Fibiger D, McDuffie E E, Jimenez J L, Brown S S, Thornton J A. J. Geophys. Res-Atmos., 2019,124:8851.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Lianxin Li, Ranran Cao, Pengyi Zhang. Catalytic Decomposition of Gaseous Ozone at Room Temperature [J]. Progress in Chemistry, 2021, 33(7): 1188-1200.
[3] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[4] Biwu Chu, Qingxin Ma, Fengkui Duan, Jinzhu Ma, Jingkun Jiang, Kebin He, Hong He. Atmospheric “Haze Chemistry”: Concept and Research Prospects [J]. Progress in Chemistry, 2020, 32(1): 1-4.
[5] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[6] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[7] Wang Haichao, Lu Keding. Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5) [J]. Progress in Chemistry, 2016, 28(6): 917-933.
[8] Wang Haichao, Chen Jun, Lu Keding. Measurement of NO3 and N2O5 in the Troposphere [J]. Progress in Chemistry, 2015, 27(7): 963-976.
[9] Liu Li Wang Dong. Organic Reactions "on Water" [J]. Progress in Chemistry, 2010, 22(07): 1233-1241.
[10] . Treatment of Antibiotic Wastewater by Ozonation [J]. Progress in Chemistry, 2010, 22(05): 1002-1009.
[11] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[12] . Observations of HOx Radical in Field Studies and the Analysisi of Its Chemical Mechanism [J]. Progress in Chemistry, 2010, 22(0203): 500-514.
[13] Liu Jinqiang, Qian Chao, Chen Xinzhi. Nitration of Deactivated Aromatic Compounds [J]. Progress in Chemistry, 2009, 21(12): 2635-2641.
[14] . Reactive Halogen Chemistry [J]. Progress in Chemistry, 2009, 21(0203): 307-334.
[15] . Advances in the Mechanism of Secondary Fine Particulate Matters Formation [J]. Progress in Chemistry, 2009, 21(0203): 288-296.
Viewed
Full text


Abstract

Atmospheric Chemistry of Nitryl Chloride