中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 1-4 DOI: 10.7536/PC191230   Next Articles

Atmospheric “Haze Chemistry”: Concept and Research Prospects

Biwu Chu1,3, Qingxin Ma1,3, Fengkui Duan2, Jinzhu Ma1,3, Jingkun Jiang2, Kebin He2,3,**(), Hong He1,3,**()   

  1. 1. State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received: Online: Published:
  • Contact: Kebin He, Hong He
  • About author:
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05000000); The National Natural Science Foundation of China(21190054); The National Key R&D Program of China(2017YFC0211101); The National Key R&D Program of China(2017YFC0209503); The National Key R&D Program of China(2016YFC0201506)
Richhtml ( 77 ) PDF ( 1334 ) Cited
Export

EndNote

Ris

BibTeX

Air pollution is a major challenge for the humankind. Under the highly complex air pollution conditions in China, strong homogenous nucleation and multiphase heterogeneous processes coexist, coupling with strong atmospheric oxidizing capacity and ozone pollution. This complex air pollution, different from the “London smog” and the “Los Angeles photochemical smog”, is a new type of “haze chemistry smog” pollution. “Haze chemistry” distinguishes from traditional homogeneous chemistry by surpassing its existing theoretical understandings. It is a type of air pollution chemistry that comprehensively studies the gas-liquid-solid multiphase processes, revealing the formation mechanism of PM2.5 and the non-linear relationship between PM2.5 and O3 under typical multi-medium complex air pollution conditions. Understanding “haze chemistry” processes is crucial for precise control of complex air pollution in China and other countries. Here, we propose and summarize the concept of “haze chemistry”, and discuss its further improvement, development, and application.

[1]
He K B , Yang F M , Ma Y L , Zhang Q , Yao Xi H , Kchan C , Cadle S , Chan T . Atmospheric Environment, 2001,35(29):4959.
[2]
贺泓(He H), 王新明(Wang X M), 王跃思(Wang Y S), 王自发(Wang Z F), 刘建国(Liu J G), 陈运法(Chen Y F). 中国科学院院刊(Bulletin of Chinese Academy of Sciences), 2013,28(03):54.
[3]
He H , Wang Y S , Ma Q X , Ma J Z , Chu B W , Ji D S , Tang G Q , Liu C , Zhang H X , Hao J M . Sci. Rep., 2014,4:4172. https://www.ncbi.nlm.nih.gov/pubmed/24566871

doi: 10.1038/srep04172 pmid: 24566871
[4]
Wang Z B , Wu Z J , Yue D L , Shang D J , Guo S , Sun J Y , Ding A J , Wang L , Jiang J K , Guo H , Gao J , Cheung H C , Morawska L , Keywood M , Hu M . Science of the Total Environment, 2017,577:258. https://www.ncbi.nlm.nih.gov/pubmed/27817924

doi: 10.1016/j.scitotenv.2016.10.177 pmid: 27817924
[5]
Yao L , Garmash O , Bianchi F , Zheng J , Yan C , Kontkanen J , Junninen H , Mazon S B Ehn M , Paasonen P , Sipila M , Wang M Y , Wang X K , Xiao S,Chen H F , Lu, Y Q , Zhang B W , Wang D F , Fu Q Y , Geng F H , Li L , Wang H L , Qiao L P,Yang X , Chen J M , Kerminen V M , Petaja T , Worsnop D R , Kulmala M , Wang L . Science, 2018,361(6399):278. https://www.ncbi.nlm.nih.gov/pubmed/30026225

doi: 10.1126/science.aao4839 pmid: 30026225
[6]
Chu B W , Kerminen V M , Bianchi F , Yan C , Petäjä T , Kulmala M . Atmospheric Chemistry and Physics, 2019,19(1):115.
[7]
Ma Q X , Liu Y C , He H . J. Phys. Chem. A, 2008,112(29):6630. https://www.ncbi.nlm.nih.gov/pubmed/18578482

doi: 10.1021/jp802025z pmid: 18578482
[8]
马金珠(Ma J Z), 刘永春(Liu Y C), 马庆鑫(Ma Q X), 刘畅(Liu C), 贺泓(He H). 环境化学(Environmental Chemistry), 2011,30(1):97.
[9]
Liu C , Ma Q X , Liu Y C , Ma J Z , He H . Phys. Chem. Chem. Phys., 2012,14(5):1668. https://www.ncbi.nlm.nih.gov/pubmed/21993907

doi: 10.1039/c1cp22217a pmid: 21993907
[10]
张小曳(Zhang X Y), 孙俊英(Sun J Y), 王亚强(Wang Y Q), 李卫军(Li W J), 张蔷(Zhang Q), 王炜罡(Wang W G), 权建农(Quan J N), 曹国良(Cao G L), 王继志(Wang J Z), 杨元琴(Yang Y Q), 张养梅(Zhang Y M) . 科学通报(Chinese Science Bulletin), 2013,58(13):1178.
[11]
Zheng B , Zhang Q , Zhang Y , He K B , Wang K , Zheng G J , Duan F K , Ma Y L , Kimoto T . Atmospheric Chemistry and Physics, 2015,15(4):2031.
[12]
Tang M J , Huang X , Lu K D , Ge M F , Li Y J , Cheng P , Zhu T , Ding A J , Zhang Y H , Gligorovski S , Song W , Ding X , Bi X H , Wang X M . Atmos. Chem. Phys., 2017,17(19):11727.
[13]
Li K , Jacob D J , Liao H , Shen L , Zhang Q , Bates K H . Proceedings of the National Academy of Sciences of the United States of America, 2019,116(2):422.
[14]
Lu K D , Guo S , Tan Z F , Wang H C , Shang D J , Liu Y H , Li X , Wu Z J , Hu M , Zhang Y H . National Science Review, 2019,6(3):579.
[15]
Dentener F J , Carmichael G R , Zhang Y , Lelieveld J , Crutzen P J . J. Geophys. Res., 1996,101(D17):22869.
[16]
Ravishankara A R . Science, 1997,276(5315):1058.
[17]
Liu Y C , He H , Mu Y J . Atmospheric Environment, 2008,42(5):960.
[18]
Ma J Z , Liu Y C , He H . Atmospheric Environment, 2010,44(35):4446.
[19]
Zhang S P , Xing J , Sarwar G , Ge Y L , He H , Duan F K , Zhao Y , He K B , Zhu L D , Chu B W . Atmospheric Environment, 2019,208:133. https://www.ncbi.nlm.nih.gov/pubmed/31186616

doi: 10.1016/j.atmosenv.2019.04.004 pmid: 31186616
[20]
Cai R L , Yang D S , Fu Y Y , Wang X , Li X X , Ma Y , Hao J M , Zheng J , Jiang J K . Atmospheric Chemistry and Physics, 2017,17(20):12327.
[21]
Cai R L , Jiang J K . Atmospheric Chemistry and Physics, 2017,17(20):12659.
[22]
Wang G H , Zhang R Y , Gomez M E , Yang L X , Zamora M L , Hu M , Lin Y , Peng J F , Guo S , Meng J J , Li J J , Cheng C L , Hu T F , Ren Y Q , Wang Y S , Gao J , Cao J J , An Z S , Zhou W J , Li G H , Wang J Y , Tian P F , Marrero-Ortiz W , Secrest J , Du Z F , Zheng J , Shang D J , Zeng L M , Shao M , Wang W G , Huang Y , Wang Y , Zhu Y J , Li Y X , Hu J X , Pan B , Cai L , Cheng Y T , Ji Y M , Zhang F , Rosenfeld D , Liss P S , Duce R A , Kolb C E , Molina M J . Proceedings of the National Academy of Sciences of the United States of America, 2016,113(48):13630.
[23]
Cheng Y F , Zheng G J , Wei C , Mu Q , Zheng B , Wang Z B , Gao M , Zhang Q , He K B , Carmichael G , Poschl U , Su H . Science Advances, 2016,2(12):e1601530. https://www.ncbi.nlm.nih.gov/pubmed/28028539

doi: 10.1126/sciadv.1601530 pmid: 28028539
[24]
Li H Y , Cheng J , Zhang Q , Zheng B , Zhang Y X , Zheng G J , He H . Atmospheric Chemistry and Physics, 2019,19(17):11485.
[25]
Zhang Q , Zheng Y X , Tong D , Shao M , Wang S X , Zhang Y H , Xu X D , Wang J N , He H D , Liu W Q , Ding Y H , Lei Y , Li J H , Wang Z F , Zhang X Y , Wang Y S , Cheng J , Liu Y , Shi Q R , Hao J M . Proceedings of the National Academy of Sciences, 2019,116(49):201907956.
[26]
Ma J Z , Wang C X , He H . Applied Catalysis B-Environmental, 2017,201:503.
[1] Lianxin Li, Ranran Cao, Pengyi Zhang. Catalytic Decomposition of Gaseous Ozone at Room Temperature [J]. Progress in Chemistry, 2021, 33(7): 1188-1200.
[2] Haichao Wang, Mingjin Tang, Zhaofeng Tan, Chao Peng, Keding Lu. Atmospheric Chemistry of Nitryl Chloride [J]. Progress in Chemistry, 2020, 32(10): 1535-1546.
[3] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[4] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[5] . Treatment of Antibiotic Wastewater by Ozonation [J]. Progress in Chemistry, 2010, 22(05): 1002-1009.
[6] . Reactive Halogen Chemistry [J]. Progress in Chemistry, 2009, 21(0203): 307-334.
[7] Long Jia1,2,Maofa Ge2**,Yongfu Xu3,Lin Du2,Guoshun Zhuang1,Dianxun Wang2. Advances in Atmospheric Ozone Chemistry [J]. Progress in Chemistry, 2006, 18(11): 1565-1574.
[8] Wang Zhenya**,Zhou Shikang,Sheng Liusi. Polar Stratospheric Clouds and Its Heterogeneous Chemistry* [J]. Progress in Chemistry, 2004, 16(01): 49-.
[9] Lin Yongda,Chen Qingyun. Atmospheric Ozone Layer Depletion and CFCs Alternatives [J]. Progress in Chemistry, 1998, 10(02): 228-.
[10] Yin Kailiang,Xu Duanjun,Xu Yuanzhi,Sun Xiaoqiang. Advances in Physical Chemistry of Supramolecular Systems [J]. Progress in Chemistry, 1997, 9(04): 337-.