中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 917-933 DOI: 10.7536/PC151225 Previous Articles   Next Articles

• Review and comments •

Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5)

Wang Haichao, Lu Keding*   

  1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 41375124,91544225,21190052,41121004), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010500), and the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (No.13Z02ESPCP).
PDF ( 901 ) Cited
Export

EndNote

Ris

BibTeX

Particulate pollution is a major air pollution problem in Chinese mega-cities. Under such conditions, the atmospheric gas-phase chemistry is strongly influenced by heterogeneous reactions, of which to quantify the heterogeneous reaction processes of N2O5 is essential for the understanding of the nighttime oxidation capacity, regional NOx budget, photochemical ozone prodution, etc. In this paper, we extensively review the research progress of the N2O5 heterogeneous reaction processes such as its reaction mechanism, measurement techniques of the corresponding uptake coefficient (γN2O5) and the measurement results on different aerosol substrates. The heterogeneous reaction processes of N2O5 is a typical reactive uptake process which can be ideally studied by the aerosol flow tube system. The corresponding laboratory kinetic studies are started from model aerosols (sulfate), and evolved to be more realistic aerosols according to the accumulated knowledges on the aerosol properties obtained in field studies. It is found that the γN2O5 varied from 0.001 to 0.2 on different aerosol substrates, more than two orders of magnitude. The variation is influenced by the ambient temperature, relative humidity, mixing state, phase state, aerosol chemical compositions like NO3-, Cl-, SO42-, liquid water content (LWC), organics, etc., of which the uptake coefficient is higher with higher LWC, Cl-, SO42- while lower with higher NO3- and organics. The avaiable field studies in the United States and Europe showed that, to describe γN2O5, these impact factors can't be independently expressed; and the dependence seems to be very complicated and cross correlated. Therefore the state of art parameterization methods of γN2O5 developed from lab kinetic studies are still not able to describe the field observations. Since high aerosol loading and high N2O5 are always co-located at urban aeras, more field observations and sucessful parameterization of γN2O5 is proposed to be conducted in typical urban conditions including Chinese megacity regions.

Contents
1 Introduction
2 Proposed Mechanisms of the N2O5 heterogeneous uptake
3 Measurement of the heterogeneous uptake coefficient of N2O5 in the simulated system
3.1 Measurement techniques
3.2 Measurement results on different aerosol substrates
4 Measurement of the heterogeneous uptake coefficient of N2O5 in the field
5 The parameterization of the heterogeneous uptake coefficient of N2O5
6 Conclusion and outlook

CLC Number: 

[1] Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H. Nature, 2014, 514: 218.
[2] Zhang R Y, Wang G H, Guo S, Zarnora M L, Ying Q, Lin Y, Wang W G, Hu M, Wang Y. Chem. Rev., 2015, 115: 3803.
[3] 朱彤(Zhu T),尚静(Shang J),赵德峰(Zhao D F). 中国科学· 化学(Scientia Sinica Chimica), 2010, 40(12): 1731.
[4] Davidovits P, Kolb C E, Williams L R, Jayne J T, Worsnop D R. Chem. Rev., 2006, 106: 1323.
[5] Kolb C E, Cox R A, Abbatt J P D, Ammann M, Davis E J, Donaldson D J, Garrett B C, George C, Griffiths P T, Hanson D R, Kulmala M, McFiggans G, Poschl U, Riipinen I, Rossi M J, Rudich Y, Wagner P E, Winkler P M, Worsnop D R, O'Dowd C D. Atmos. Chem. Phys., 2010, 10: 10561
[6] Abbatt J P D, Lee A K Y, Thornton J A. Chem. Soc. Rev., 2012, 41: 6555.
[7] 张泽峰(Zhang Z F),朱彤(Zhu T),尚静(Shang J). 化学进展(Progress in Chemistry), 2009, 21(2/3): 282.
[8] Chang W L, Bhave P V, Brown S S, Riemer N, Stutz J, Dabdub D. Aerosol Sci. Tech., 2011, 45: 665.
[9] Brown S S, Stutz J. Chem. Soc. Rev., 2012, 41: 6405.
[10] 王海潮(Wang H C), 陈军(Chen J), 陆克定(Lu K D).化学进展(Progress in Chemistry), 2015, 27: 963.
[11] Alexander B, Hastings M G, Allman D J, Dachs J, Thornton J A, Kunasek S A. Atmos. Chem. Phys., 2009, 9: 5043.
[12] Tsai C, Wong C, Hurlock S, Pikelnaya O, Mielke L H, Osthoff H D, Flynn J H, Haman C, Lefer B, Gilman J, de Gouw J, Stutz J. J. Geophys. Res. -Atmos., 2014, 119: 13004.
[13] Mozurkewich M, Calvert J G. J. Geophys. Res. -Atmos., 1988, 93: 15889.
[14] Li S M, Anlauf K G, Wiebe H A. J. Geophys. Res. -Atmos., 1993, 98: 5139.
[15] Brown S S, Ryerson T B, Wollny A G, Brock C A, Peltier R, Sullivan A P, Weber R J, Dube W P, Trainer M, Meagher J F, Fehsenfeld F C, Ravishankara A R. Science, 2006, 311: 67.
[16] Brown S S, Dube W P, Fuchs H, Ryerson T B, Wollny A G, Brock C A, Bahreini R, Middlebrook A M, Neuman J A, Atlas E, Roberts J M, Osthoff H D, Trainer M, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res. -Atmos., 2009, 114: 1013.
[17] Crowley J N, Schuster G, Pouvesle N, Parchatka U, Fischer H, Bonn B, Bingemer H, Lelieveld J. Atmos. Chem. Phys., 2010, 10: 2795.
[18] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition,Wiley, 2006.
[19] Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications,Academic Press, 1999.
[20] 唐孝炎(Tang X Y),张远航(Zhang Y H),邵敏(Shao M). 大气环境化学(第二版)(Atmospheric Environmental Chemistry,2nd ed).北京:高等教育出版社(Beijing:Higher Education Press),2006. 185.
[21] Fuchs N A, Sutugin A G. Highly Dispersed Aerosols,in International Reviews of Aerosol Physics and Chemistry,Vol 2, NY, 1971. 1.
[22] Tang M J, Schuster G, Crowley J N. Atmos. Chem. Phys., 2014, 14: 245.
[23] Aldener M, Brown S S, Stark H, Williams E J, Lerner B M, Kuster W C, Goldan P D, Quinn P K, Bates T S, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res. -Atmos., 2006, 111: 5307.
[24] Stone D, Evans M J, Walker H, Ingham T, Vaughan S, Ouyang B, Kennedy O J, McLeod M W, Jones R L, Hopkins J, Punjabi S, Lidster R, Hamilton J F, Lee J D, Lewis A C, Carpenter L J, Forster G, Oram D E, Reeves C E, Bauguitte S, Morgan W, Coe H, Aruffo E, Dari-Salisburgo C, Giammaria F, Di Carlo P, Heard D E. Atmos. Chem. Phys., 2014, 14: 1299.
[25] Allan B J, McFiggans G, Plane J M C, Coe H, McFadyen G G. J. Geophys. Res. -Atmos., 2000, 105: 24191.
[26] Jacob D J. Atmos. Environ., 2000, 34: 2131.
[27] Evans M J, Jacob D J. Geophys. Res. Lett., 2005, 32: 297.
[28] Wahner A, Mentel T F, Sohn M, Stier J. J. Geophys. Res. -Atmos., 1998, 103: 31103.
[29] Mentel T F, Sohn M, Wahner A. Phys. Chem. Chem. Phys., 1999, 1: 5451.
[30] Robinson G N, Worsnop D R, Jayne J T, Kolb C E, Davidovits P. J. Geophys. Res. -Atmos., 1997, 102: 3583.
[31] Finlaysonpitts B J, Ezell M J, Pitts J N. Nature, 1989, 337: 241.
[32] Osthoff H D, Roberts J M, Ravishankara A R, Williams E J, Lerner B M, Sommariva R, Bates T S, Coffman D, Quinn P K, Dibb J E, Stark H, Burkholder J B, Talukdar R K, Meagher J, Fehsenfeld F C, Brown S S. Nat. Geosci., 2008, 1: 324.
[33] Thornton J A, Kercher J P, Riedel T P, Wagner N L, Cozic J, Holloway J S, Dube W P, Wolfe G M, Quinn P K, Middlebrook A M, Alexander B, Brown S S. Nature, 2010, 464: 271.
[34] Roberts J M, Osthoff H D, Brown S S, Ravishankara A R, Coffman D, Quinn P, Bates T. Geophys. Res. Lett., 2009, 36: 1437.
[35] Thornton J A, Braban C F, Abbatt J P D. Phys. Chem. Chem. Phys., 2003, 5: 4593.
[36] Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009, 9: 8351.
[37] Seisel S, Borensen C, Vogt R, Zellner R. Atmos. Chem. Phys., 2005, 5: 3423.
[38] Brouwer L, Rossi M J, Golden D M. J. Phys. Chem.-Us., 1986, 90: 4599.
[39] Longfellow C A, Ravishankara A R, Hanson D R. J. Geophys. Res. -Atmos., 2000, 105: 24345.
[40] Karagulian F, Rossi M J. J. Phys. Chem. A, 2007, 111: 1914.
[41] 陈琦(Chen Q),朱彤(Zhu T),李宏军(Li H J),丁杰(Ding J),李怡(Li Y). 自然科学进展(Progress in Natural Science),2005,15(12):1518.
[42] 张泽峰(Zhang Z F),朱彤(Zhu T),尚静(Shang J),赵德峰(Zhao D F). 环境科学学报(Acta Scientiae Circumstantiae),2011,31(10):2073.
[43] 赵德峰(Zhao D F),朱彤(Zhu T),陈琦(Chen Q),刘颖君(Liu Y J),张泽峰(Zhang Z F). 中国科学·化学(Scientia Sinica Chimica), 2010, 40(12):1741.
[44] 吴玲燕(Wu L Y),佟胜睿(Tong S R),葛茂发(Ge M F). 环境化学(Envronmental Chemistry), 2013, 32(7):1365.
[45] Rkiouak L, Tang M J, Camp J C J, McGregor J, Watson I M, Cox R A, Kalberer M, Ward A D, Pope F D. Phys. Chem. Chem. Phys., 2014, 16: 11426.
[46] Tang M J, Camp J C J, Rkiouak L, McGregor J, Watson I M, Cox R A, Kalberer M, Ward A D, Pope F D. J. Phys. Chem. A, 2014, 118: 8817.
[47] Gross S, Iannone R, Xiao S, Bertram A K. Phys. Chem. Chem. Phys., 2009, 11: 7792.
[48] Knopf D A, Anthony L M, Bertram A K. J. Phys. Chem. A, 2005, 109: 5579.
[49] Knopf D A, Cosman L M, Mousavi P, Mokamati S, Bertram A K. J. Phys. Chem. A, 2007, 111: 11021.
[50] Brown R L. J. Res. Nat. Bur. Stand., 1978, 83: 1.
[51] Mozurkewich M, Mcmurry P H, Gupta A, Calvert J G. J. Geophys. Res. -Atmos., 1987, 92: 4163.
[52] Griffiths P T, Badger C L, Cox R A, Folkers M, Henk H H, Mentel T F. J. Phys. Chem. A, 2009, 113: 5082.
[53] Fahey D W, Eubank C S, Hubler G, Fehsenfeld F C. Atmos. Environ., 1985, 19: 1883.
[54] Karagulian F, Santschi C, Rossi M J. Atmos. Chem. Phys., 2006, 6: 1373.
[55] Morgan W T, Ouyang B, Allan J D, Aruffo E, Di Carlo P, Kennedy O J, Lowe D, Flynn M J, Rosenberg P D, Williams P I, Jones R, McFiggans G B, Coe H. Atmos. Chem. Phys., 2015, 15: 973.
[56] Hanisch F, Crowley J N. J. Phys. Chem. A, 2001, 105: 3096.
[57] Wagner C, Hanisch F, Holmes N, de Coninck H, Schuster G, Crowley J N. Atmos. Chem. Phys., 2008, 8: 91.
[58] Gross S, Bertram A K. J. Phys. Chem. A, 2008, 112: 3104.
[59] Badger C L, Griffiths P T, George I, Abbatt J P D, Cox R A. J. Phys. Chem. A, 2006, 110: 6986.
[60] Hallquist M, Stewart D J, Stephenson S K, Cox R A. Phys. Chem. Chem. Phys., 2003, 5: 3453.
[61] Wagner C, Schuster G, Crowley J N. Atmos. Environ., 2009, 43: 5001.
[62] Hu J H, Abbatt J P D. J. Phys. Chem. A, 1997, 101: 871.
[63] Kane S M, Caloz F, Leu M T. J. Phys. Chem. A, 2001, 105: 6465.
[64] Thornton J A, Abbatt J P D. J. Phys. Chem. A, 2005, 109: 10004.
[65] McNeill V F, Patterson J, Wolfe G M, Thornton J A. Atmos. Chem. Phys., 2006, 6: 1635.
[66] Escoreia E N, Sjostedt S J, Abbatt J P D. J. Phys. Chem. A, 2010, 114: 13113.
[67] Tang M J, Thieser J, Schuster G, Crowley J N. Atmos. Chem. Phys., 2010, 10: 2965.
[68] Tang M J, Thieser J, Schuster G, Crowley J N. Phys. Chem. Chem. Phys., 2012, 14: 8551.
[69] Vandoren J M, Watson L R, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. J. Phys. Chem.-Us., 1990, 94: 3265.
[70] Saathoff H, Naumann K H, Riemer N, Kamm S, Mohler O, Schurath U, Vogel H, Vogel B. Geophys. Res. Lett., 2001, 28: 1957.
[71] Folkers M, Mentel T F, Wahner A. Geophys. Res. Lett., 2003, 30: 46-1.
[72] Mogili P K, Kleiber P D, Young M A, Grassian V H. Atmos. Environ., 2006, 40: 7401.
[73] Fried A, Henry B E, Calvert J G, Mozurkewich M. J. Geophys. Res. -Atmos., 1994, 99: 3517.
[74] Griffiths P T, Cox R A. Atmos. Sci. Lett., 2009, 10: 159.
[75] Hallquist M, Stewart D J, Baker J, Cox R A. J. Phys. Chem. A, 2000, 104: 3984.
[76] Wahner A, Mentel T F, Sohn M. Geophys. Res. Lett., 1998, 25: 2169.
[77] Riemer N, Vogel H, Vogel B, Schell B, Ackermann I, Kessler C, Hass H. J. Geophys. Res. -Atmos., 2003, 108: 4601.
[78] Davis J M, Bhave P V, Foley K M. Atmos. Chem. Phys., 2008, 8: 5295.
[79] Behnke W, Kruger H U, Scheer V, Zetzsch C. J. Aerosol Sci., 1991, 22: S609.
[80] Behnke W, George C, Scheer V, Zetzsch C. J. Geophys. Res. -Atmos., 1997, 102: 3795.
[81] Folkers M. Doctoral Dissertation of Universitätzu Köln, 2001.
[82] Stewart D J, Griffiths P T, Cox R A. Atmos. Chem. Phys., 2004, 4: 1381.
[83] Anttila T, Kiendler-Scharr A, Tillmann R, Mentel T F. J. Phys. Chem. A, 2006, 110: 10435.
[84] Cosman L M, Bertram A K. J. Phys. Chem. A, 2008, 112: 4625.
[85] Cosman L M, Knopf D A, Bertram A K. J. Phys. Chem. A, 2008, 112: 2386..
[86] Gaston C J, Thornton J A, Ng N L. Atmos. Chem. Phys., 2014, 14: 5693.
[87] Riemer N, Vogel H, Vogel B, Anttila T, Kiendler-Scharr A, Mentel T F. J. Geophys. Res. -Atmos., 2009, 114: 767.
[88] Knopf D A, Forrester S M, Slade J H. Phys. Chem. Chem. Phys., 2011, 13: 21050.
[89] Hoffman R C, Gebel M E, Fox B S, Finlayson-Pitts B J. Phys. Chem. Chem. Phys., 2003, 5: 1780.
[90] Tang M J, Telford P J, Pope F D, Rkiouak L, Abraham N L, Archibald A T, Braesicke P, Pyle J A, McGregor J, Watson I M, Cox R A, Kalberer M. Atmos. Chem. Phys., 2014, 14: 6035.
[91] Bertram T H, Thornton J A, Riedel T P, Middlebrook A M, Bahreini R, Bates T S, Quinn P K, Coffman D J. Geophys. Res. Lett., 2009, 36: 308.
[92] Walker J M, Philip S, Martin R V, Seinfeld J H. Atmos. Chem. Phys., 2012, 12: 11213.
[93] Zhang L, Jacob D J, Knipping E M, Kumar N, Munger J W, Carouge C C, van Donkelaar A, Wang Y X, Chen D. Atmos. Chem. Phys., 2012, 12: 4539.
[94] Stavrakou T, Muller J F, Boersma K F, van der A R J, Kurokawa J, Ohara T, Zhang Q. Atmos. Chem. Phys., 2013, 13: 9057.
[95] Brown S S, Stark H, Ravishankara A R. J. Geophys. Res. -Atmos., 2003, 108: 1601.
[96] Wagner N L, Riedel T P, Young C J, Bahreini R, Brock C A, Dube W P, Kim S, Middlebrook A M, Ozturk F, Roberts J M, Russo R, Sive B, Swarthout R, Thornton J A, VandenBoer T C, Zhou Y, Brown S S. J. Geophys. Res. -Atmos., 2013, 118: 9331.
[97] Bertram T H, Thornton J A, Riedel T P. Atmos. Meas. Tech., 2009, 2: 231.
[98] Riedel T P, Bertram T H, Ryder O S, Liu S, Day D A, Russell L M, Gaston C J, Prather K A, Thornton J A. Atmos. Chem. Phys., 2012, 12: 2959.
[1] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[2] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[3] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[4] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[5] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[6] Haichao Wang, Mingjin Tang, Zhaofeng Tan, Chao Peng, Keding Lu. Atmospheric Chemistry of Nitryl Chloride [J]. Progress in Chemistry, 2020, 32(10): 1535-1546.
[7] Rongzhi Tang, Hui Wang, Ying Liu, Song Guo. Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190.
[8] Fangting Gu, Min Hu*, Jing Zheng, Song Guo. Research Progress on Particulate Organonitrates [J]. Progress in Chemistry, 2017, 29(9): 962-969.
[9] Wang Haichao, Chen Jun, Lu Keding. Measurement of NO3 and N2O5 in the Troposphere [J]. Progress in Chemistry, 2015, 27(7): 963-976.
[10] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[11] Shen Lijuan, Zhang Zefeng*. Heterogeneous Reactions of NO2 on the Surface of Black Carbon [J]. Progress in Chemistry, 2013, 25(01): 28-35.
[12] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[13] Liu Li Wang Dong. Organic Reactions "on Water" [J]. Progress in Chemistry, 2010, 22(07): 1233-1241.
[14] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[15] . Heterogeneous Reaction of NO2 on the Surface of Mineral Dust Particles [J]. Progress in Chemistry, 2009, 21(0203): 282-287.