中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (9): 962-969 DOI: 10.7536/PC170324 Previous Articles   Next Articles

• Review •

Research Progress on Particulate Organonitrates

Fangting Gu, Min Hu*, Jing Zheng, Song Guo   

  1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 91544214, 41421064, 51636003) and the National Basic Research Program of China (No. 2013CB228503).
PDF ( 1477 ) Cited
Export

EndNote

Ris

BibTeX

Particulate organonitrates are formed from volatile organic compounds (VOCs) oxidation by radicals. A portion of semi-volatile gas-phase organonitrates can be incorporate into aerosol by oxidation reactions or portioning, and has been an important component of secondary organic aerosol (SOA). Particulate organonitrates study has become one of the important aspects of atmospheric chemistry. Given the large number and variability of chemical constituents, and possible chemical transformations of organonitrates, such characterization presents a key problem for research. Based on recent research progress on particulate organonitrates, this paper summarizes the formation mechanism and quantification method of particulate organonitrates. Profiting from the application of high time resolution techniques, field measurements has become the major approach of particulate organonitrates study. Thermal dissociation-laser induced fluorescence (TD-LIF) and aerosol mass spectrometers (AMS) have been used to quantify and provide the evolution processes of particulate organonirates. Meanwhile, chemical ionization mass spectrometer(CIMS)allows for the determination of molecular ion composition of organonitrates, promising to become the important direction of study of particulate organonirates in future field measurements. To have a deep insight on precursor and atmospheric chemistry processes of particulate organonirates, future research should focus on the combination of field measurement, modeling simulation and laboratory simulation, and these will also lead to a more comprehensive understanding of formation mechanism of particulate organonirates.
Contents
1 Introduction
2 Research progress on particulate organonitrates
2.1 Formation mechanism of particle-phase organonitrates
2.2 Measurements and quantification methods of particulate organonitrates
2.3 Formation and environmental effects of particulate organonitrates
3 Conclusion and outlook

CLC Number: 

[1] Day D A, Dillon M B, Wooldridge P J, Thornton J A, Rosen R S, Wood E C, Cohen R C. Journal of Geophysical Research:Atmospheres, 2003, 108(D16):4501.
[2] Farmer D K, Matsunaga A, Docherty K S, Surratt J D, Seinfeld J H, Ziemann P J, Jimenez J L. Proceedings of the National Academy of Sciences, 2010, 107(15):6670.
[3] Capouet M, Müller J F. Atmospheric Chemistry and Physics, 2006, 6(6):1455.
[4] Rollins A W, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M, Cohen R C. Science, 2012, 337:1210.
[5] Sun Y L, Zhang Q, Schwab J J, Yang T, Ng N L, Demerjian K L. Atmospheric Chemistry and Physics, 2012, 12(18):8537.
[6] Xu L, Suresh S, Guo H, Weber R J, Ng N L. Atmospheric Chemistry and Physics, 2015, 15(13):7307.
[7] Fry J L, Draper D C, Zarzana K J, Campuzano-Jost P, Day D A, Jimenez J L, Brown S S, Cohen R C, Kaser L, Hansel A, Cappellin L, Karl T, Hodzic Roux A, Turnipseed A, Cantrell C, Lefer B L, Grossberg N. Atmospheric Chemistry and Physics, 2013, 13(17):8585.
[8] Garnes L A, Allen D T. Aerosol Science & Technology, 2002, 36(10):983.
[9] Fry J L, Kiendler-Scharr A, Rollins A W, Wooldridge P J, Brown S S, Fuchs H, Dubé W, Mensah A, Dal Maso M, Tillmann R, Dorn H P, Brauers T, Cohen R C. Atmospheric Chemistry and Physics, 2009, 9(4):1431.
[10] Lim Y B, Ziemann P J. Aerosol Science and Technology, 2009, 43(6):604.
[11] Matsunaga A, Ziemann P J. The Journal of Physical Chemistry A, 2008, 113(3):599.
[12] Roberts J M. Atmospheric Environment. Part A. General Topics, 1990, 24(2):243.
[13] Wisthaler A, Apel E C, Bossmeyer J, Hansel A, Junkermann W, Koppmann R, Meier R, Muller K, Solomon S J, Steinbrecher R, Tillmann R, Brauers T, Tillmann R. Atmospheric Chemistry and Physics, 2008, 8(8):2189.
[14] Perring A E, Pusede S E, Cohen R C. Chemical Reviews, 2013, 113(8):5848.
[15] Flocke F, Volz-Thomas A, Kley D. Atmospheric Environment. Part A. General Topics, 1991, 25(9):1951.
[16] 黄志(Huang Z), 高天宇(Gao T Y), 赵西萌(Zhao X M), 王凤(Wang F), 杨光(Yang G), 王斌(Wang B), 徐振强(Xu Z Q), 胡敏(Hu M), 曾立民(Zeng L M), 张剑波(Zhang J B).北京大学学报(自然科学版)(Acta Scientiarum Naturalium Universitatis Pekinensis), 2016, 52(3):528.
[17] Atkinson R, Aschmann S M, Carter W P L, Winer A M, Pitts J N J. The Journal of Physical Chemistry, 1982, 86(23):4563.
[18] Arey J, Aschmann S M, Eric S C, Kwok E S, Atkinson R. The Journal of Physical Chemistry A, 2001, 105(6):1020.
[19] Talbot R W, Dibb J E, Scheuer E M, Bradshaw J D, Sandholm S T, Blake D R, Elliot A, Flocke F. Journal of Geophysical Research:Atmospheres, 2000, 105(D5):6681.
[20] Blake N J, Blake D R, Wingenter O W, Sive B C, Kang C H, Thornton D C, Alan R B, Elliot A, Frank F, Joyce M H. Journal of Geophysical Research:Atmosphere, 1999, 104(D17):21803.
[21] Perring A E, Wisthaler A, Graus M, Wooldridge P J, Lockwood A L, Mielke L H, Shepson P B, Cohen R C. Atmospheric Chemistry and Physics, 2009, 9(14):4945.
[22] Spittler M, Barnes I, Bejan I, Brockmann K J, Benter T, Wirtz K. Atmospheric Environment, 2006, 40:116.
[23] Shepson P B, Edney E O, Kleindienst T E, Pittman J H, Namie J R, Cupitt L T. Environmental Science & Technology, 1985, 19(9):849.
[24] Hjorth J, Lohse C, Nielsen C J, Skov H, Restelli G. The Journal of Physical Chemistry, 1990, 94(19):7494.
[25] Barnes I, Bastian V, Becker K H, Tong Z. Journal of Physical Chemistry, 1990, 94(6):2413.
[26] Wängberg I. Journal of Atmospheric Chemistry, 1993, 17(3):229.
[27] Berndt T, Böge O. International Journal of Chemical Kinetics, 1997, 29(10):755.
[28] Rollins A W, Kiendler-Scharr A, Fry J L, Brauers T, Brown S S, Dorn H P, Rohrer F. Atmospheric Chemistry and Physics, 2009, 9(18):6685.
[29] Atkinson R, Aschmann S M, Arey J. Environmental Science & Technology, 1992, 26(7):1397.
[30] Horowitz L W, Fiore A M, Milly G P, Cohen R C, Perring A, Wooldridge P J, Peter G H, Louisa K E, Lamarque J F. Journal of Geophysical Research:Atmospheres, 2007, 112:D12S08.
[31] 姚立(Yao L), 葛茂发(Ge M F), 乔志敏(Qiao Z M), 孙政(Sun Z), 王殿勋(Wang D X). 化学通报(Chemistry Bulletin), 2006, 69(5):1.
[32] Aschmann S M, Tuazon E C, Arey J, Atkinson R. Atmospheric Environment, 2011, 45(9):1695.
[33] Aschmann S M, Arey J, Atkinson R. Atmospheric Environment, 2012, 46:264.
[34] Fischer R G, Ballschmiter K. Chemosphere, 1998, 36(14):2891.
[35] Shepson P B, Mackay E, Muthuramu K. Environmental Science & Technology, 1996, 30(12):3618.
[36] Treves K, Shragina L, Rudich Y. Environmental Science & Technology, 2000, 34(7):1197.
[37] Guo H, Xu L, Bougiatioti A, Cerully K M, Capps S L, Hite J R, Carlton A G, Lee S H, Bergin M H, Ng N L. Atmos. Chem. Phys., 2015, 15(9):5211.
[38] Yee L D, Craven J S, Loza C L, Schilling K A, Ng N L, Canagaratna M R, Ziemann P J, Flagan R C,Seinfeld J H. The Journal of Physical Chemistry A, 2012, 116(24):6211.
[39] Lim Y B, Ziemann P J. Environmental Science & Technology, 2005, 39(23):9229.
[40] O'Brien J M, Shepson P B, Muthuramu K, Hao C, Niki H, Hastie D R, Taylor R, Roussel P B. Journal of Geophysical Research:Atmospheres, 1995, 100(D11):22795.
[41] 董璨(Dong C), 侯可勇(Hou K Y), 王俊德(Wang J D), 李海洋(Li H Y). 化学进展(Progress in Chemistry), 2007, 19(2):377.
[42] Lee B H, Mohr C, Lopez-Hilfiker F D, Lutz A, Hallquist M, Lee L, Romer P, Cohen R C, Iyer S, Kurtén T, Hu W W, Day D A, Campuzano J P, Jimenez J L, Xu L, Ng N L, Guo H Y, Weber R J, Wild R J, Brown S S, Koss A, Gouw J D, Olson K, Goldstein A H, Seco R, Kim S, McAvey K, Shepson P B, Starn T, Baumann K, Edgerton E S, Liu J M, Shilling J E, Miller D O, Brune W, Schobesberger S, D'Ambro E L, Thornton J A. Proceedings of the National Academy of Sciences, 2016, 113(6):1516.
[43] Blando J D, Porcja R J, Li T H, Bowman D, Lioy P J, Turpin B J. Environmental Science & Technology, 1998, 32(5):604.
[44] Thornton J A, Wooldridge P J, Cohen R C.Analytical Chemistry, 2000, 72(3):528.
[45] Murphy J G, Day D A, Cleary P A. Atmospheric Chemistry and Physics, 2006, 6(12):5321.
[46] Roberts J M, Osthoff H D, Brown S S, Ravishankara A R, Coffman D, Quinn P, Bates T. Geophysical Research Letters, 2009, 36(20):L20808.
[47] Zhang Y M, Sun J Y, Zhang X Y, Zhang X C. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 11:047.
[48] Sato K, Takami A, Isozaki T, Hikida T, Shimono A, Imamura T. Atmospheric Environment, 2010, 44(8):1080.
[49] Boyd C M, Sanchez J, Xu L, Eugene A J, Nah T, Tuet W Y, Guzman M I, Ng N L. Atmos. Chem. Phys. Discuss, 2015, 15:2679.
[50] Bruns E A, Perraud V, Zelenyuk A, Ezell M J, Johnson S N, Yu Y, Imre D, Alexander M L. Environmental Science & Technology, 2010, 44(3):1056.
[51] Rollins A W, Fry J L, Hunter J F, Kroll J H, Worsnop D R, Singaram S W, Cohen R C. Atmospheric Chemistry and Physics, 2010, 10(9):4111.
[52] 黄晓锋(Huang X F), 赵倩彪(Zhao Q B), 何凌燕(He L Y), 胡敏(Hu M), 卞奇婧(Bian Q J), 薛莲(Xue L), 张远航(Zhang Y H). 中国科学:化学(Science China:Chemistry), 2010, 40(10):1550.
[53] Forstner H J L, Flagan R C, Seinfeld J H. Environmental Science & Technology, 1997, 31(5):1345.
[54] Kleindienst T E, Conver T S, McIver C D, Edney E O. Journal of Atmospheric Chemistry, 2004, 47(1):79.
[55] Surratt J D, Kroll J H, Kleindienst T E, Edney E O, Claeys M, Sorooshian A, Ng N L, Offenberg J H, Lewandowski M, Jaoui M, Flagan R C, Seinfeld J H. Environmental Science & Technology, 2007, 41(2):517.
[56] Iinuma Y, Müller C, Berndt T, Böge O, Claeys M, Herrmann H. Environmental Science & Technology, 2007, 41(19):6678.
[57] Zhang J K, Cheng M T, Ji D S, Liu Z R, Hu B, Sun Y, Wang Y S. Science of the Total Environment, 2016, 562:812.
[58] 唐孝炎(Tang X Y), 张远航(Zhang Y H), 邵敏(Shao M).大气环境化学(Atmospheric Environmental Chemistry). 北京:高教育出版社(Beijing:High Education Press), 2006. 367.
[1] Rongzhi Tang, Hui Wang, Ying Liu, Song Guo. Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190.
[2] Yunhan Xu, Leilei Wang, Aijun Hu, Lili Yuan, Zhiyuan Wang, Shiyong Yang*. Polyimide Foams for High Temperature Applications [J]. Progress in Chemistry, 2018, 30(5): 684-691.
[3] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[4] Wu Menghao, Dai Jun, Zeng Xiaocheng. Ab Initio Computation Based Design of Three-Dimensional Structures of Carbon Allotropes [J]. Progress in Chemistry, 2012, 24(06): 1050-1057.
[5] . Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds [J]. Progress in Chemistry, 2010, 22(04): 727-733.
[6] . Observations of HOx Radical in Field Studies and the Analysisi of Its Chemical Mechanism [J]. Progress in Chemistry, 2010, 22(0203): 500-514.
[7] . "Click Chemistry" and Its Growing Applications in Biomedical Field [J]. Progress in Chemistry, 2010, 22(0203): 417-426.