中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 460-473 DOI: 10.7536/PC201113 Previous Articles   Next Articles

• Review •

Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage

Yumeng Wang1, Rong Yang1,2(), Qijiu Deng2, Chaojiang Fan1,2, Suzhen Zhang1, Yinglin Yan1   

  1. 1 International Research Center for Composite and Intelligent Manufacturing Technology, Xi’an University of Technology,Xi'an 710048, China
    2 School of Materials Science and Engineering, Xi’an University of Technology,Xi’an 710048, China
  • Received: Revised: Online: Published:
  • Contact: Rong Yang
  • Supported by:
    International Science and Technology Cooperation Program of China(2015DFR50350); National Natural Science Foundation of China(51702256); China Postdoctoral Science Foundation(2019M653706); Innovation Capability Support Program of Shaanxi(2019TD-019); Postdoctoral Science Foundation of Shaanxi Province of China(2018BSHEDZZ120)
Richhtml ( 58 ) PDF ( 1070 ) Cited
Export

EndNote

Ris

BibTeX

Bimetallic organic frameworks and their derivatives have the characteristics of rich pore structure, large specific surface area, adjustable structure, abundant active sites, as well as the synergistic effect between bi-component and porous structure, so they are paid close attention to by researchers and widely used in electrochemical energy storage, catalysis, separation, sensors, medicine, gas storage and other fields. Just as monometallic organic frameworks, the poor conductivity and collapsible structure of bimetallic organic frameworks greatly limit their applications in electrochemical energy storage. It is through heat treatment of bimetallic organic frameworks that porous carbon@bimetallic oxide/sulfide/phosphide/selenide derivatives with uniform distribution, which not only keep rich pore structure, but also have improved conductivity and structural stability, being conducive to the application in the field of electrochemical energy storage are obtained. Therefore, in the view of the main metal ions in the bimetallic organic frameworks, this research reviewes the latest progress of the organic frameworks and their derivatives in electrochemical energy storage devices such as supercapacitors, lithium ion batteries, sodium ion batteries, and metal-air batteries, respectively. On this basis, the advantages of bimetallic MOFs in the application of electrochemical energy storage are summarized, and suggestions on its preparation, mechanism and post-treatment are put forward.

Contents

1 Introduction

2 Application of bimetallic MOFs in the field of electrochemical energy storage

2.1 Co-based bimetallic MOFs

2.2 Ni-based bimetallic MOFs

2.3 Zn-based bimetallic MOFs

2.4 Other bimetallic MOFs

3 Conclusion and outlook

Fig. 1 The theoretical energy densities of different metal-air batteries
Table 1 Preparation of bimetallic MOFs and their derivatives
Metals Organic ligands Preparation method Post treatment Reagent Heat treatment
conditions
(Atmosphere,
Temperature/ ℃,
Time/h, Heating
rate/ ℃·min-1)
Product Objective Application ref
CoZn 2-MeIm Stirring Carboni-
zation
Ar/H2, 700, 3, 5 Co Precursors for self-catalyzed CNTs growth Li-S batteries 26
ZnCo 2-MIM Immerse Ar, 800, 2, 1 Co Enhance catalytic properties Zn-air/Al-Air batteries 27
CoFe benzimidazole Solvothermal N2, 700, 4, — Co/Fe Enhance ORR activity Zn-air batteries 28
FeNi trimesic acid Stirring Ar, 800, 6, 2 FeNi3Cx Enhance OER activity Zn-air batteries 29
CoCu 2-MeIm Solvothermal Oxidation Air, 350, 2, 1 CuCo2O4 Formation of yolk shell structure Supercapacitors 30
CoMn urea Solvothermal Air, 600, 5, 1 MnCo2O4 Manganese can bring high capacity Supercapacitors 31
CoNi H3BTC Hydrotherma Air/Ar, 400, 2, 1 NiCo2O4/NiO Formation of multilayer core-shells Supercapacitors 32
ZnMn 2-MeIm Immerse Ar, 800, 1, 3 Mn@ZnO Improve the ion adsorption and charge-transfer Supercapacitors 33
CoCu H3BTC Solvothermal Air, 450, 2, — Co3O4@CuO Unique yolk-shell structure,and the multistep Li+ storage Li-ion batteries 34
NiCo 3,5-pyrazoledi-carboxylic acid Solvothermal Vulcaniza-
tion
TAA N2, 300, 1, 2 NiS/CoS Improve the structural stability Supercapacitors 35
ZnCo 2-MeIm Standing S N2, 800/600, 5/2,
2/5
CoS2 Zn was evaporated to form the porous composites Supercapacitors 36
CoNi 2-MeIm Immerse Na2S N2, 350, 2, 3 NiCo2S4 Improve conductivity and structural stability Battery-Supercapacitor 37
ZnCo 2-MeIm Stirring S N2, 600, 2, 2 Zn0.754Co0.246S Zn-Co-S yolks deliver high capacity and the fabricated void spaces can alleviate the large volume change Li-ion batteries 38
CoZn 2-MeIm Stirring TAA Ar, 600, 2, 2 CoZnS Unique structure and synergistic effect of bimetallic sulfide Li-ion batteries 39
NiCo 1,10-phenanthr-oline Solvothermal Phospho-
rization
NaH2PO2 N2, 450, 2, 5 NiCoP Have higher electrical conductivity and richer redox reactions Supercapacitors 40
NiCo formic acid Stirring NaH2PO2 N2, 350, 2, 2 NiCoP Formation of hollow structure Supercapacitors 20
CoNi 2-MeIm Standing NaH2PO2 N2, 300, 2, 2 NiCoP Improve the structural stability Li-ion batteries 41
NiCo trimesic acid Standing Selenization Se N2, 600, 2, 2 NiCoSe Improve the structural stability Li-ion batteries 42
MnFe CTAB Stirring Se N2, 500, 2, 1 FeMnSe Unique porous architecture and synergistic effect of the heterogeneous components K-ion batteries /Na-ion batteries 43
Fig. 2 A schematic diagram of the preparation of EC@NiCo2S4[44]
Table 2 Summary of electrochemical performances of Co-based bimetallic MOFs and some derivatives in the supercapacitors
Fig. 3 (a, b) SEM images, (c, d) TEM images, (e)High resolution TEM image of NiCoP[41]
Fig. 4 (a) Preparation of Co3O4@CuO@GQDs, (b) Cyclic performance of Co3O4@CuO@GQDs and pristine Co3O4@CuO at 0.1 A·g-1[34]
Fig. 5 Illustration of the overall fabrication process for the M-FeCo-N-C-X catalysts[13]
Table 3 Morphology of Ni-based bimetallic organic frameworks
Fig. 6 Performances of RZABs employing FeNi3Cx-Pd-7% and Pt/C+RuO2 catalysts as the air-cathode. (a) Schematic illustration of the self-assembled RZAB. (b) The discharge polarization curves and the corresponding power density plots. (c) The open-circuit potential plots. (d) Galvanostatic discharge specific capacity curves at 10 mA·cm-2. (e) Galvanostatic charge-discharge cycling curves at 10 mA·cm-2 with a duration of 10 min per cycle. Inset into the panel (e) is the optical photo of a LED powered by two RZABs connected in series, using FeNi3Cx-Pd-7% loaded carbon fiber papers as air cathode[29]
Fig. 7 (a) N2 adsorption-desorption isotherms of NPC-300-900 and NPC-5-900, (b) pore size distribution of NPC-300-900 and NPC-5-900[65]
Fig. 8 Schematic of the fabrication of Mn@ZnO/CNFs. Upper row: Electrospinning setup, SEM image of Mn@ZnO/CNF, and photograph of flexible electrodes powering an LED. Lower row: Loading of Mn@ZIF-8 over CNFs, atomic structures of Mn@ZIF-8, and a photograph showing the flexibility of an electrode sample[33]
Fig. 9 Electrocatalytic mechanism of CNCo-5@Fe-2 catalyst for ORR[66]
Fig. 10 SEM images of (a) Cu-BTC, (b) Cu@C, (c) Ni-BTC, (d) Ni@C, (e) CuNi0.25-BTC, (f ) CuNi0.25@C, (g) CuNi0.5-BTC, (h) CuNi0.5@C[70]
Fig. 11 SEM images of the MnS-(ZnCo)S/N-C composite[73]
[1]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.

doi: 10.1021/acs.chemrev.6b00075
[2]
Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Adv. Mater., 2018, 30(37): 1870276.

doi: 10.1002/adma.v30.37
[3]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.

doi: 10.1016/j.ccr.2019.02.029
[4]
Wang D G, Wang H, Song M, Yu G P, Kuang G C. Chem. Asian J., 2018, 13(20): 3051.

doi: 10.1002/asia.v13.20
[5]
Wang D G, Wang H, Lin Y, Yu G P, Song M, Zhong W B, Kuang G C. ChemSusChem, 2018, 11(22): 3932.

doi: 10.1002/cssc.v11.22
[6]
Xu Y X, Li Q, Xue H G, Pang H. Coord. Chem. Rev., 2018, 376: 292.

doi: 10.1016/j.ccr.2018.08.010
[7]
Sundriyal S, Kaur H, Bhardwaj S K, Mishra S, Kim K H, Deep A. Coord. Chem. Rev., 2018, 369: 15.

doi: 10.1016/j.ccr.2018.04.018
[8]
Liang Z B, Qu C, Zhou W Y, Zhao R, Zhang H, Zhu B J, Guo W H, Meng W, Wu Y X, Aftab W, Wang Q, Zou R Q. Adv. Sci., 2019, 6(8): 1802005.

doi: 10.1002/advs.v6.8
[9]
Dubal D P, Ayyad O, Ruiz V, GÓmez-Romero P. Chem. Soc. Rev., 2015, 44(7): 1777.

doi: 10.1039/c4cs00266k pmid: 25623995
[10]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[11]
Xu Y F, Zheng K W. Ship Science and Technology, 2003, 25(1): 66.
( 许艳芳, 郑克文. 舰船科学技术, 2003, 25(1): 66.)
[12]
Feng J, Chen J C, Xiao B. Mater. Rev., 2005, 19(10): 59.
( 冯晶, 陈敬超, 肖冰. 材料导报, 2005, 19(10): 59.)
[13]
Chao F F, Wang B X, Ren J J, Lu Y W, Zhang W R, Wang X Z, Cheng L, Lou Y B, Chen J X. J. Energy Chem., 2019, 35: 212.

doi: 10.1016/j.jechem.2019.03.025
[14]
Chawla N. Mater. Today Chem., 2019, 12: 324.

doi: 10.1016/j.mtchem.2019.03.006
[15]
Wei W Y, Fang J, Kong H N, Han J Y, Chang H Y. Progress in Chemistry, 2005, 17(6): 1110.
( 魏文英, 方健, 孔海宁, 韩金玉, 常贺英. 化学进展, 2005, 17(6): 1110.)
[16]
Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16): 5390.

doi: 10.1021/ja7106146 pmid: 18376833
[17]
Fu D C, Chen Z Y, Yu C Y, Song X L, Zhong W B. Prog. Nat. Sci.: Mater. Int., 2019, 29(5): 495.

doi: 10.1016/j.pnsc.2019.08.014
[18]
Chen Y Y, Meng Y Q, Zhang C, Yang H X, Xue Y C, Yuan A H, Shen X P, Xu K Q. J. Power Sources, 2019, 421: 41.

doi: 10.1016/j.jpowsour.2019.03.006
[19]
Zheng K T, Li G N, Xu C J. Appl. Surf. Sci., 2019, 490: 137.

doi: 10.1016/j.apsusc.2019.06.071
[20]
Zhang X L, Zhang L, Xu G C, Zhao A H, Zhang S, Zhao T. J. Colloid Interface Sci., 2020, 561: 23.

doi: 10.1016/j.jcis.2019.11.112
[21]
Wang X Q, Yang N N, Li Q Q, He F, Yang Y F, Wu B H, Chu J, Zhou A N, Xiong S X. J. Solid State Chem., 2019, 277: 575.

doi: 10.1016/j.jssc.2019.07.019
[22]
Kong D Z, Wang Y, Huang S Z, Hu J P, Lim Y V, Liu B, Fan S, Shi Y M, Yang H Y. Energy Storage Mater., 2019, 23: 653.
[23]
Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Carbon, 2019, 149: 564.

doi: 10.1016/j.carbon.2019.04.022
[24]
Seo Y, Shinde P A, Park S, Jun S C. Electrochimica Acta, 2020, 335: 135327.

doi: 10.1016/j.electacta.2019.135327
[25]
Guan X H, Huang M H, Yang L, Wang G S, Guan X. Chem. Eng. J., 2019, 372: 151.

doi: 10.1016/j.cej.2019.04.145
[26]
Cheng D D, Zhao Y L, Tang X W, An T, Wang X, Zhou H, Zhang D, Fan T X. Carbon, 2019, 149: 750.

doi: 10.1016/j.carbon.2019.04.108
[27]
Zhu C Y, Ma Y Y, Zang W J, Guan C, Liu X M, Pennycook S J, Wang J, Huang W. Chem. Eng. J., 2019, 369: 988.

doi: 10.1016/j.cej.2019.03.147
[28]
Pendashteh A, Vilela S M F, Krivtsov I, Ávila-Brande D, Palma J, Horcajada P, Marcilla R. J. Power Sources, 2019, 427: 299.

doi: 10.1016/j.jpowsour.2019.04.074
[29]
Li T Z, Chen Y H, Tang Z H, Liu Z, Wang C H. Electrochim. Acta, 2019, 307: 403.

doi: 10.1016/j.electacta.2019.03.192
[30]
Saleki F, Mohammadi A, Moosavifard S E, Hafizi A, Rahimpour M R. J. Colloid Interface Sci., 2019, 556: 83.

doi: 10.1016/j.jcis.2019.08.044
[31]
Saren P, De Adhikari A, Khan S, Nayak G C. J. Solid State Chem., 2019, 271: 282.

doi: 10.1016/j.jssc.2018.11.016
[32]
Yang K, Yan Y, Chen W, Zeng D H, Ma C, Han Y, Zhang W Q, Kang H T, Wen Y Y, Yang Y. J. Electroanal. Chem., 2019, 851: 113445.

doi: 10.1016/j.jelechem.2019.113445
[33]
Samuel E, Joshi B, Kim M W, Kim Y I, Swihart M T, Yoon S S. Chem. Eng. J., 2019, 371: 657.

doi: 10.1016/j.cej.2019.04.065
[34]
Wu M H, Chen H Q, Lv L P, Wang Y. Chem. Eng. J., 2019, 373: 985.

doi: 10.1016/j.cej.2019.05.100
[35]
Li Q, Yue L G, Li L, Liu H, Yao W Q, Wu N, Zhang L W, Guo H, Yang W. J. Alloys Compd., 2019, 810: 151961.

doi: 10.1016/j.jallcom.2019.151961
[36]
Lei K Z, Ling J Z, Zhou J C, Zou H B, Yang W, Chen S Z. Mater. Res. Bull., 2019, 116: 59.

doi: 10.1016/j.materresbull.2019.04.006
[37]
Zhou M, Zhao H, Ko F, Servati P, Bahi A, Soltanian S, Ge F Y, Zhao Y P, Cai Z S. J. Power Sources, 2019, 440: 227146.

doi: 10.1016/j.jpowsour.2019.227146
[38]
Wei X J, Zhang Y B, Zhang B K, Lin Z, Wang X P, Hu P, Li S L, Tan X, Cai X Y, Yang W, Mai L Q. Nano Energy, 2019, 64: 103899.

doi: 10.1016/j.nanoen.2019.103899
[39]
Guo S H, Feng Y, Qiu J H, Li X D, Yao J F. J. Alloys Compd., 2019, 792: 8.

doi: 10.1016/j.jallcom.2019.03.398
[40]
Zhou Q F, Gong Y, Tao K Y. Electrochimica Acta, 2019, 320: 134582.

doi: 10.1016/j.electacta.2019.134582
[41]
Duan J L, Zou Y L, Li Z Y, Long B. Powder Technol., 2019, 354: 834.

doi: 10.1016/j.powtec.2019.07.004
[42]
Yang T, Liu Y G, Yang D X, Deng B B, Huang Z H, Ling C D, Liu H, Wang G X, Guo Z P, Zheng R K. Energy Storage Mater., 2019, 17: 374.
[43]
Wang J M, Wang B B, Liu X J, Bai J T, Wang H, Wang G. Chem. Eng. J., 2020, 382: 123050.

doi: 10.1016/j.cej.2019.123050
[44]
Liu Y P, Li Z L, Yao L, Chen S M, Zhang P X, Deng L B. Chem. Eng. J., 2019, 366: 550.

doi: 10.1016/j.cej.2019.02.125
[45]
Zhao Y H, Dong H X, He X Y, Yu J, Chen R R, Liu Q, Liu J Y, Zheng H S, Li R M, Wang J. J. Power Sources, 2019, 438: 227057.

doi: 10.1016/j.jpowsour.2019.227057
[46]
Yang Q J, Liu Y, Yan M, Lei Y, Shi W D. Chem. Eng. J., 2019, 370: 666.

doi: 10.1016/j.cej.2019.03.239
[47]
Zhao W, Zheng Y W, Cui L, Jia D D, Wei D, Zheng R K, Barrow C, Yang W R, Liu J Q. Chem. Eng. J., 2019, 371: 461.

doi: 10.1016/j.cej.2019.04.070
[48]
Cheng L, Zhang Q S, Xu M, Zhai Q C, Zhang C L. J. Colloid Interface Sci., 2021, 583: 299.

doi: 10.1016/j.jcis.2020.09.040
[49]
Chen H D, Xu J X, Ji S M, Ji W J, Cui L F, Huo Y P. Progress of Chemistry, 2020, 32(2/3): 298.
( 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. 化学进展, 2020, 32(2/3): 298.).

doi: 10.7536/PC190610
[50]
Zhao J, Yao S W, Hu C G, Li Z T, Wang J, Feng X X. Mater. Lett., 2019, 250: 75.

doi: 10.1016/j.matlet.2019.04.104
[51]
Li M M, Feng W J, Wang X. J. Alloys Compd., 2021, 853: 157194.

doi: 10.1016/j.jallcom.2020.157194
[52]
Chen Y X, Ni D, Yang X W, Liu C C, Yin J L, Cai K F. Electrochimica Acta, 2018, 278: 114.

doi: 10.1016/j.electacta.2018.05.024
[53]
Zhao M T, Lu Q P, Ma Q L, Zhang H. Small Methods, 2017, 1(1/2): 1600030.

doi: 10.1002/smtd.v1.1-2
[54]
Tanabe K K, Cohen S M. Chem. Soc. Rev., 2011, 40(2): 498.

doi: 10.1039/C0CS00031K
[55]
Jia Z Q, Cui Z H, Tan Y B, Liu Z W, Guo X X. Chem. Eng. J., 2019, 370: 89.

doi: 10.1016/j.cej.2019.03.162
[56]
Wang J, Zhong Q, Zeng Y Q, Cheng D Y, Xiong Y H, Bu Y F. J. Colloid Interface Sci., 2019, 555: 42.

doi: 10.1016/j.jcis.2019.07.063
[57]
Kumaraguru S, Yesuraj J, Mohan S. Compos. B: Eng., 2020, 185: 107767.

doi: 10.1016/j.compositesb.2020.107767
[58]
Zhang X, Fan Y, Khan M A, Zhao H B, Ye D X, Wang J L, Yue B H, Fang J H, Xu J Q, Zhang L, Zhang J J. Batter. Supercaps, 2020, 3(1): 108.

doi: 10.1002/batt.v3.1
[59]
Wang S D, Ning P, Huang S S, Wang W W, Fei S M, He Q Q, Zai J T, Jiang Y, Hu Z J, Qian X F, Chen Z W. J. Power Sources, 2019, 436: 226857.

doi: 10.1016/j.jpowsour.2019.226857
[60]
Pourfarzad H, Shabani-Nooshabadi M, Ganjali M R. J. Power Sources, 2020, 451: 227768.

doi: 10.1016/j.jpowsour.2020.227768
[61]
Liang H F, Xia C, Jiang Q, Gandi A N, Schwingenschlögl U, Alshareef H N. Nano Energy, 2017, 35: 331.

doi: 10.1016/j.nanoen.2017.04.007
[62]
Dan H M, Tao K Y, Zhou Q F, Gong Y, Lin J H. ACS Appl. Mater. Interfaces, 2018, 10(37): 31340.

doi: 10.1021/acsami.8b09836
[63]
Qu G M, Zhang X X, Xiang G T, Wei Y R, Yin J M, Wang Z H, Zhang X L, Xu X J. Chin. Chem. Lett., 2020, 31(7): 2007.

doi: 10.1016/j.cclet.2020.01.040
[64]
Wang J, Zhu Y H, Zhang C, Kong F J, Tao S, Qian B, Jiang X F. Appl. Surf. Sci., 2019, 485: 413.

doi: 10.1016/j.apsusc.2019.04.145
[65]
Lei T F, Pan F. J. Energy Storage, 2019, 25: 100898.

doi: 10.1016/j.est.2019.100898
[66]
Zhang C L, Liu J T, Li H, Qin L, Cao F H, Zhang W. Appl. Catal. B: Environ., 2020, 261: 118224.

doi: 10.1016/j.apcatb.2019.118224
[67]
Song C L, Li G H, Yang Y, Hong X J, Huang S, Zheng Q F, Si L P, Zhang M, Cai Y P. Chem. Eng. J., 2020, 381: 122701.

doi: 10.1016/j.cej.2019.122701
[68]
Yu X L, Deng J J, Lv R, Huang Z H, Li B H, Kang F Y. Energy Storage Mater., 2019, 20: 14.
[69]
Rajpurohit A S, Punde N S, Srivastava A K. J. Colloid Interface Sci., 2019, 553: 328.

doi: 10.1016/j.jcis.2019.06.031
[70]
Tijerina L M, Oliva González C M, Kharisov B I, Serrano Quezada T E, MÉndez Y P, Kharissova O V, de la Fuente I G. Mendeleev Commun., 2019, 29(4): 400.

doi: 10.1016/j.mencom.2019.07.014
[71]
Guo F Y, Chen H Y, Chen Y, Zhang W, Li Z M, Xu Y L, Wang Y Q, Zhou J J, Zhang H. J. Alloys Compd., 2021, 852: 156814.

doi: 10.1016/j.jallcom.2020.156814
[72]
Xu K Q, Ma L B, Shen X P, Ji Z Y, Yuan A H, Kong L R, Zhu G X, Zhu J. Electrochimica Acta, 2019, 323: 134855.

doi: 10.1016/j.electacta.2019.134855
[73]
Cao D W, Fan W D, Kang W P, Wang Y Y, Sun K A, Zhao J C, Xiao Z Y, Sun D F. Mater. Today Energy, 2019, 12: 53.
[1] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[2] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[3] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[4] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[5] Kun Cao, Bei Yuan, Xue Liu, Minfang Wu, Zhen Yao*. Preparation and Applications of the Chiral Norbornene Derivatives [J]. Progress in Chemistry, 2017, 29(6): 605-616.
[6] Fu Kaiqiao, Zhang Guangyan, Jiang Xulin. Synthesis and Application of Polyaspartamide Derivatives for Drug/Gene Delivery [J]. Progress in Chemistry, 2016, 28(8): 1196-1206.
[7] Hu Xiangzheng, Wang Jianmin. Preparation and Application of Chenodeoxycholic Acid and Its Derivatives [J]. Progress in Chemistry, 2016, 28(6): 814-828.
[8] Gao Peng, Gao Binbin, Gao Jianqiang, Zhang Kai, Yang Yongping, Chen Hongwei. Chitosan and Its Composites for Removal of Mercury Ion from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(12): 1834-1846.
[9] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[10] Weng Xilun, Bao Zongbi, Luo Fei, Su Baogen, Yang Yiwen, Ren Qilong. Progress in Preparation and Applications of Cellulose Derivatives-Based Chiral Stationary Phase [J]. Progress in Chemistry, 2014, 26(0203): 415-423.
[11] Zhou Guifeng, Wang Qin, Zeng Renquan, Fu Xiangkai, Yang Xinbin. Preparation and Application of Zirconium Phosphate and Its Derivatives [J]. Progress in Chemistry, 2014, 26(01): 87-99.
[12] Su Bin, Zhao Jing, Liu Chunbo, Che Guangbo, Wang Qingwei, Xu Zhanlin. Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives [J]. Progress in Chemistry, 2013, 25(07): 1090-1101.
[13] Peng Lianhui, Zhu Pengcheng, Zhang Chun*, Xu Huibi. Synthesis and Applications of Hexaphenylbenzene Derivatives [J]. Progress in Chemistry, 2013, 25(01): 77-85.
[14] Hou Chen, Zhu Hao, Li Yijing, Li Yanfeng. Immobilized Proline and Its Derivatives Employed in the Catalysis of Asymmetric Organic Synthesis [J]. Progress in Chemistry, 2012, (9): 1729-1741.
[15] Hu Huiyuan, Zhu Hong. Adsorption of Heavy Metal Ions by Chitosan and Its Derivatives [J]. Progress in Chemistry, 2012, 24(11): 2212-2223.