中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (8): 1196-1206 DOI: 10.7536/PC160212 Previous Articles   Next Articles

• Review and comments •

Synthesis and Application of Polyaspartamide Derivatives for Drug/Gene Delivery

Fu Kaiqiao1*, Zhang Guangyan1*, Jiang Xulin2   

  1. 1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Department of Light Industry, Hubei University of Technology, Wuhan 430068, China;
    2. Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174109, 21374083) and the Doctoral Scientific Research Foundation of Hubei University of Technology (No. BSQD14003)
PDF ( 1773 ) Cited
Export

EndNote

Ris

BibTeX

Compared with carbon-chain polymers, poly(amino acid)s have attracted much attentions in biomedical and pharmaceutical fields because of their good biocompatibility, biodegradability and nontoxicity. Polyaspartamide derivatives based on L-aspartic acid not only can be easily synthesized, but also can be further modified with various structures to prepare intelligent material with different stimuli-responsivity (such as temperature, pH and redox), resulting in controlled release, enhancement of therapeutic effects and reduction of the drug side effects. In this review, the different synthetic strategies for preparing polyaspartamide derivatives and the up-to-date developments on polyaspartamide derivatives for drug and gene delivery systems are summarized. Besides, the future perspectives of polyaspartamide derivatives are discussed.

Contents
1 Introduction
2 Synthesis of polyaspartamide derivatives
2.1 Aminolysis reaction of PSI
2.2 ROP of N-carboxyanhydride
3 Application of polyaspartamide derivatives
3.1 Drug delivery
3.2 Gene delivery
4 Outlook

CLC Number: 

[1] Prabhakar U, Maeda H, Jain R K, Sevick-Muraca E M, Zamboni W, Farokhzad O C, Barry S T, Gabizon A, Grodzinski P, Blakey D C. Cancer Res., 2013, 73:2412.
[2] Xu L, Anchordoquy T. J. Pharm. Sci-US, 2011, 100:38.
[3] Lorenzer C, Dirin M, Winkler A M, Baumann V, Winkler J. J. Control. Release, 2015, 203:1.
[4] Sun H L, Meng F H, Dias A A, Hendriks M, Feijen J, Zhong Z Y. Biomacromolecules, 2011, 12:1937.
[5] Khan W, Muthupandian S, Farah S, Kumar N, Domb A J. Macromol. Biosci., 2011, 11:1625.
[6] Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T. Br. J. Cancer, 2005, 92, 1240.
[7] Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R. Invest. New Drugs, 2012, 30:1621.
[8] Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J P. Biomaterials, 2008, 29:3477.
[9] Tomida M, Nakato T, Matsunami S, Kakuchi T. Polymer, 1997, 38:4733.
[10] Nakato T, Kusuno A, Kakuchi T. J. Polym. Sci. Part A:Polym. Chem., 2000, 38:117.
[11] Moon J R, Kim M W, Kim D, Jeong J H, Kim J H. Colloid Polym. Sci., 2011, 289:63.
[12] Das P, Jana N R. RSC Adv., 2015, 5:33586.
[13] Seo K, Lee D S, Kim S C, Kim D. J. Nanosci Nanotechno., 2010, 10:6986.
[14] Seo K, Kim D. Acta Biomater., 2010, 6:2157.
[15] Liu D E, Han H, Lu H Q, Wu G L, Wang Y N, Ma J B, Gao H. RSC Adv., 2014, 4:37130.
[16] Bach Q V, Moon J R, Lee D S, Kim J H. J. Appl. Polym. Sci., 2008, 107:509.
[17] Tachibana Y, Kurisawa M, Uyama H, Kakuchi T, Kobayashi S. Chem. Commun., 2003, 1:106.
[18] Gu X, Wang J J, Liu X F, Zhao D P, Wang Y N, Gao H, Wu G L. Soft Matter, 2013, 9:7267.
[19] Lu C C, Wang X J, Wu G L, Wang J J, Wang Y N, Gao H, Ma J B. J. Biomed. Mater. Res. A, 2014, 102A:628.
[20] Licciardi M, Campisi M, Cavallaro G, Cervello M, Azzolina A, Giammona G. Biomaterials, 2006, 27:2066.
[21] Licciardi M, Cavallaro G, Di Stefano M, Fiorica C, Giammona G. Macromol. Biosci., 2011, 11:445.
[22] Sarpietro M G, Pitarresi G, Ottimo S, Giuffrida M C, Ognibene M C, Fiorica C, Giammona G, Castellit F. Mol. Pharm., 2011, 8:642.
[23] Ognibene M C, Rocco F, Craparo E F, Picone P, Ceruti M, Giammona G. Curr. Nanosci., 2011, 7:747.
[24] Fiorica C, Senior R A, Pitarresi G, Palumbo F S, Giammona G, Deshpande P, MacNeil S. Int. J. Pharm., 2011, 414:104.
[25] Matricardi P, Pitarresi G, Palumbo F S, Di Meo C, Albanese A, Coviello T, Cencetti C, Fiorica C, Giammona G. Macromol. Res. 2011, 19:1264.
[26] Licciardi M, Cavallaro G, Amato G, Fiorica C, Giammona G. React. Funct. Polym., 2012, 72:268.
[27] Scialabba C, Rocco F, Licciardi M, Pitarresi G, Ceruti M, Giammona G. Drug Deliv., 2012, 19:307.
[28] Piccionello A P, Pitarresi G, Pace A, Triolo D, Picone P, Buscemi S, Giammona G. J. Drug Target., 2012, 20:433.
[29] Pitarresi G, Fiorica C, Palumbo F S, Calascibetta F, Giammona G. J. Biomed. Mater. Res. A, 2012, 100A:1565.
[30] Cavallaro G, Triolo D, Licciardi M, Giammona G, Chirico G, Sironi L, Dacarro G, Dona A, Milanese C, Pallavicini P. Biomacromolecules, 2013, 14:4260.
[31] Pitarresi G, Fiorica C, Palumbo F S, Rigogliuso S, Ghersi G, Giammona G. J. Biomed. Mater. Res. A, 2014, 102A:1334.
[32] Sardo C, Nottelet B, Triolo D, Giammona G, Garric X, Lavigne J P, Cavallaro G, Coudane J. Biomacromolecules, 2014, 15:4351.
[33] Pavia F C, Carrubba V L, Brucato V, Palumbo F S, Giammona G. Mat. Sci. Eng. C-Mater., 2014, 41:301.
[34] Cavallaro G, Licciardi M, Amato G, Sardo C, Giammona G, Farra R, Dapas B, Grassi M, Grassi G. Int. J. Pharm., 2014, 466:246.
[35] Cavallaro G, Craparo E F, Sardo C, Lamberti G, Barba A A, Dalmoro A. Int. J. Pharm., 2015, 495:719.
[36] Fiorica C, Palumbo F S, Pitarresi G, Giorgi M, Calascibetta F, Giammona, G. J. Pharm. Pharmacol., 2015, 67:78.
[37] Craparo E F, Licciardi M, Conigliaro A, Palumbo F S, Giammona G, Alessandro R, De Leo G, Cavallaro G. Polymer, 2015, 70:257.
[38] Craparo E F, Porsio B, Mauro N, Giammona G, Cavallaro G. Macromol. Rapid Commun., 2015, 36:1409.
[39] Craparo E F, Porsio B, Bondi M L, Giammona G, Cavallaro G. Polym. Degrad. Stabil., 2015, 119:56.
[40] Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. J. Mater. Chem. B, 2015, 3:250.
[41] Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G. J. Biomat. Sci.-Polym. E., 2011, 22:313.
[42] Thuy V T T, Lim C W, Park J H, Ahn C H, Kim D. J. Mater. Chem. B, 2015, 3:2978.
[43] Lee M, Jeong J, Kim D. Biomacromolecules, 2015, 16:136.
[44] Yu H, Sun J, Zhang Y T, Zhang G Y, Chu Y F, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2015, 53:1387.
[45] Yu J H, Quan J S, Huang J, Wang C Y, Sun B, Nah J W, Cho M H, Cho C S. Acta Biomater., 2009, 5:2485.
[46] Zhang M, Liu M, Xue Y N, Huang S W, Zhuo R X. Bioconjugate Chem., 2009, 20:440.
[47] Jeon Y S, Bui Q T, An J H, Chung D J, Kim J H. Polym-Korea, 2014, 38:108.
[48] Heo S, Jeon Y S, Kim Y J, Kim S H, Kim J H. J. Coat. Technol. Res., 2013, 10:811.
[49] Mukaya H E, Neuse E W, van Zyl R L, Chen C T. J. Inorg. Organomet. Polym., 2015, 25:367.
[50] Sharma A, Srivastava A. Polym. Chem., 2013, 4:5119.
[51] 杨奇志(Yang Q Z), 刘佳(Liu J), 蒋序林(Jiang X L).化学进展(Progress in Chemistry), 2010, 22(12):2377.
[52] Huynh N T, Jeon Y S, Zrinyi M, Kim J H. Polym. Int., 2013, 62:266.
[53] Lai M H, Lee S, Smith C E, Kim K, Kong H. ACS Appl. Mater. Interfaces, 2014, 6:10821.
[54] Ali S A, Kazi I W, Rahman F. Desalination, 2015, 357:36.
[55] Habraken G J M, Wilsens K H R M, Koning C E, Heise A. Polym. Chem., 2011, 2:1322.
[56] Lu Y, Chau M, Boyle A J, Liu P, Niehoff A, Weinrich D, Reilly R M, Winnik M A. Biomacromolecules, 2012, 13:1296.
[57] Yang W X, Wang L L, Zhu H, Xu R W, Wu Y X. Chinese J. Polym. Sci., 2013, 31:1706.
[58] Chu Y F, Yu H, Zhang Y T, Zhang G Y, Ma Y Y, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:3346.
[59] Kim Y K, Singh B, Jiang H L, Park T E, Jiang T, Park I K, Cho M H, Kang S K, Choi Y J, Cho C S. Eur. J. Pharm. Sci., 2014, 51:165.
[60] Maeda Y, Pittella F, Nomoto T, Takemoto H, Nishiyama N, Miyata K, Kataoka K. Macromol. Rapid Commun., 2014, 35:1211.
[61] Arimura H, Ohya Y, Ouchi T. Macromol. Rapid Commun., 2004, 25:743.
[62] Arimura H, Ohya Y, Ouchi T. Biomacromolecules, 2005, 6:720.
[63] Peng T, Li Y, Ahn D, Kim B S, Lee D S. Macromol. Res., 2013, 21:400.
[64] Zeng X, Guo L, Ma L F. Colloid Polym. Sci., 2015, 293:319.
[65] Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Br. J. Cancer, 2004, 91:1775.
[66] Meo C D, Cilurzo F, Licciardi M, Scialabba C, Sabia R, Paolino D, Capitani D, Fresta M, Giammona G, Villani C, Matricardi P. Pharm. Res., 2015, 32:1557.
[67] 廖荣强(Liao R Q), 刘满塑(Liu M S), 廖霞俐(Liao X L), 杨波(Yang B). 化学进展(Progress in Chemistry), 2015, 27(1):2377.
[68] 梁嘉美(Liang J M), 冯岸超(Feng A C), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2015, 27(5):533.
[69] Soga O, van Nostrum C F, Fens M, Rijcken C J F, Schiffelers R M, Storm G, Hennink W E. J. Control. Release, 2005, 103:341.
[70] Rijcken C J F, Hofman J W, van Zeeland F, Hennink W E, van Nostrum C F. J. Control. Release, 2007, 124:144.
[71] Ma Y Y, Jiang X L, Zhuo R X. Mater. Lett., 2014, 121:78.
[72] Ma Y Y, Jiang X L, Zhuo R X. J. Polym. Sci. Part A:Polym. Chem., 2013, 51:3917.
[73] Zhang G Y, Zhang Y T, Chu Y F, Ma Y Y, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2015, 53:1296.
[74] Moon J R, Jeon Y S, Zrinyi M, Kim J H. Polym. Int., 2013, 62:1218.
[75] Seo K, Chung S W, Byun Y, Kim D. Int. J. Pharm., 2012, 424:26.
[76] Ma Y Y, Zhang G Y, Li L J, Yu H, Liu J, Wang C Q, Chu Y F, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2016, 54:879.
[77] Harada M, Bobe L, Saito H, Shibata N, Tanaka R, Hayashi T, Kato Y. Cancer Sci., 2011, 102:192.
[78] Takahashi A, Yamamoto Y, Yasunaga M, Koga Y, Kuroda J, Takigahira M, Harada M, Saito H, Hayashi T, Kato Y, Kinoshita T, Ohkohchi N, Hyodo I, Matsumura Y. Cancer Sci., 2013, 104:920.
[79] Wang X J, Wu G L, Lu C C, Zhao W P, Wang Y N, Fan Y G, Gao H, Ma J B. Eur. J. Pharm. Sci., 2012, 47:256.
[80] Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P. J. Am. Chem. Soc., 2010, 132:1500.
[81] Tang R, Ji W, Wang C. Macromol. Biosci., 2010, 10:192.
[82] Thambi T, Deepagan V G, Yoo C K, Park J H. Polymer, 2011, 52:4753.
[83] Lavignac N, Nicholls J, Ferruti P, Duncan R. Macromol. Biosci., 2008, 9:480.
[84] Zhu S, Hong M, Tang G, Qian L, Lin J, Jiang Y, Pei Y. Biomaterials, 2010, 31:1360.
[85] Jin Y, Song L, Su Y, Zhu L, Pang Y, Qiu F, Tong G, Yan D, Zhu B, Zhu X. Biomacromolecules, 2011, 12:3460.
[86] Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, Yang Y, Lim N, Park C G, Kim K. Angew. Chem. Int. Ed., 2010, 49:4405.
[87] Tang L Y, Wang Y C, Li Y, Du J Z, Wang J. Bioconjugate Chem., 2009, 20:1095.
[88] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J. Am. Chem. Soc., 2008, 130:6001.
[89] Deng B, Ma P, Xie Y. Nanoscale, 2015, 7:12773.
[90] Gyarmati1 B, Vajna B, Némethy Á, László K, Szilágyi A. Macromol. Biosci., 2013, 13:633.
[91] Gyarmati1 B, Némethy Á, Szilágyi A. RSC Adv., 2014, 4:8764.
[92] Zheng C, Zhang X G, Sun L, Zhang Z P, Li C X. J. Mater. Sci. Mater. Med., 2013, 24:931.
[93] Chu Y F, Yu H, Ma Y Y, Zhang Y T, Chen W H, Zhang G Y, Wei H, Zhang X Z, Zhuo R X, Jiang X L. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:1771.
[94] Tran B N, Bui Q T, Jeon Y S, Park H S, Kim J H. Polym. Bull., 2015, 72:2605.
[95] Guo X, Huang L. Acc. Chem. Res., 2012, 45:971.
[96] Godbey W T, Wu K K, Mikos A G. J. Control. Release, 1999, 60:149.
[97] Akinc A, Thomas M, Klibanov A M, Langer R. J. Gene Med., 2005, 7:657.
[98] Godbey W T, Wu K K, Mikos A G. J. Biomed. Mater. Res., 1999, 45:268.
[99] Zhang G Y, Liu J, Yang Q Z, Zhuo R, Jiang X L. Bioconjugate Chem., 2012, 23:1290.
[100] Liu J, Xu Y, Yang Q, Li C, Hennink W E, Zhuo R X. Acta Biomater., 2013, 9:7758.
[101] Feng T S, Dong X, Tian H Y, Lam M H W, Liang H J, Wei Y, Chen X S. J. Mater. Chem. B, 2014, 2:2725.
[102] Chen J, Dong X, Feng T S, Lin L, Guo Z P, Xia J L, Tian H Y, Chen X S. Acta Biomater., 2015, 26:45.
[103] Dou X B, Hu Y, Zhao N N, Xu F J. Biomaterials, 2014, 35:3015.
[104] Cavallaro G, Licciardi M, Scirè S, Giammona G. Nanomedicine, 2009, 4:291.
[105] Cavallaro G, Scirè S, Licciardi M, Ogris M, Wagner E, Giammona G. J. Control. Release, 2008, 131:54.
[106] Di Gioia S, Sardo C, Belgiovine G, Triolo D, d'Apolito M, Castellani S, Carbone A, Giardino I, Giammona G, Cavallaro G, Conese M. Int. J. Pharm., 2015, 491:359.
[107] Miyata K, Oba M, Nakanishi M, Fukushima S, Yamasaki Y, Koyama H, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2008, 130:16287.
[108] Uchida H, Miyata K, Oba M, Ishii T, Suma T, Itaka K, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2011, 133:15524.
[109] Uchida H, Itaka K, Nomoto T, Ishii T, Suma T, Ikegami M, Miyata K, Oba M, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2014, 136:12396.
[110] Kim H J, Miyata K, Nomoto T, Zheng M, Kim A, Liu X Y, Cabral H, Christie R J, Nishiyama N, Kataoka K. Biomaterials, 2014, 35:4548.
[111] Lee Y, Ishii T, Cabral H, Kim H J, Seo J H, Nishiyama N, Oshima H, Osada K, Kataoka K. Angew. Chem. Int. Ed., 2009, 48:5309.
[112] Lee Y, Miyata K, Oba M, Ishii T, Fukushima S, Han M, Koyama H, Nishiyama N, Kataoka K. Angew. Chem. Int. Ed., 2008, 47:5163.
[113] Gao H, Takemoto H, Chen Q, Naito M, Uchida H, Liu X Y, Miyata K, Kataoka K. Chem. Commun., 2015, 51:3158.
[114] Kim H J, Ishii A, Miyata K, Lee Y, Wu S R, Oba M, Nishiyama N, Kataoka K. J. Control. Release, 2010, 145:141.
[115] Itaka K, Ishii T, Hasegawa Y, Kataoka K. Biomaterials, 2010, 31:3707.
[116] Nomoto T, Fukushima S, Kumagai M, Machitani K, Arnida, Matsumoto Y, Oba M, Miyata K, Osada K, Nishiyama N, Kataoka K. Nat. Commun., 2014, 5:3545.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[5] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[6] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[7] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[8] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[9] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[10] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[11] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[12] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[13] Lingchuang Bai, Jing Zhao, Yakai Feng. Multifunctional Gene Delivery Systems to Promote the Proliferation of Endothelial Cells [J]. Progress in Chemistry, 2019, 31(2/3): 300-310.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.