中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1834-1846 DOI: 10.7536/PC160434 Previous Articles   Next Articles

• Review and comments •

Chitosan and Its Composites for Removal of Mercury Ion from Aqueous Solution

Gao Peng1, Gao Binbin1, Gao Jianqiang1, Zhang Kai2, Yang Yongping2*, Chen Hongwei1   

  1. 1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China;
    2. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities of China(No. 2014MS108),the National High Technology and Development Program of China(No. 2013AA065404),and the National Natural Science Foundation of China(No. U1261210)
PDF ( 487 ) Cited
Export

EndNote

Ris

BibTeX

Mercury emission reduction has become a global consensus due to the physiochemical properties of mercury and its side effects on humans. Adsorption is considered as a potential Hg2+ ions removal method. Chitosan is a natural Hg2+ ions adsorbent, and its Hg2+ ions adsorption capacity and efficiency can be improved by preparation of modified derivatives from physiochemical methods. Hg2+ ions adsorption by chitosan and its derivatives is now assumed to occur through several single or mixed interactions:the amino group (-NH2) and hydroxyl (-OH), which adsorb Hg2+ ions mainly through chelate, ion exchange or electrostatic force. The protonated amino group of chitosan and C=N group (Schiff base) of its derivatives may are the main selective functional groups responsible for Hg2+ ions adsorption. In this study, we review the research progress of Hg2+ ions removal by chitosan and its composites in the field of water treatment, and introduce the means of chitosan physiochemical modification (e.g. freeze drying, electrostatic spinning, crosslinking or grafting) as well as composite mercury removal by new carbon materials (e.g. carbon nanotubes, graphene oxide) in latest research. The removel efficiency and influential factors of Hg2+ ions removel by chitosan and its derivatives are discussed in detail. Finally, we discuss the research prospects of chitosan adsorbent materials in treatment of mercury pollution.

Contents
1 Introduction
2 The mechanism of mercury removal by chitosan and its derivatives
2.1 The influencing factors of mercury removal by chitosan and its derivatives
2.2 The mechanism of selective mercury removal by chitosan and its derivatives
3 The study of chitosan and its derivatives removal of mercury
3.1 Physical modification of chitosan
3.2 Chemical modification of chitosan
3.3 Novel chitosan composite sorbents
3.4 The effect of mercury removal by different modification methods
4 Problems and prospects

CLC Number: 

[1] Wang C, Tao S Y, Wei W, Meng C G, Liu F Y, Han M. J. Mater. Chem., 2010, 20:4635.
[2] The State Council of the People's Republic of China. Water Pollution Prevention Plan of Action, 2015.
[3] Zhang T, Kim B, Levard C, Reinsch B C, Lowry G V, Deshusses M A, Kim H. Environ. Sci. Technol., 2012, 46(13):6950.
[4] Parham H, Zargar B, Shiralipour R. J. Hazard. Mater., 2012, 205/206:94.
[5] Say R, Birlik E, Erdemgil Z, Denizli A, Ersoz A. J. Hazard. Mater., 2008, 150:560.
[6] Fu F L, Wang Q. Journal of Environmental Management, 2011, 92:407.
[7] 李新贵(Li X H), 封皓(Feng H), 黄美荣(Huang M R).化学进展(Progress in Chemistry), 2008, 20(2/3):233.
[8] 刘娟(Liu J).山西大学硕士论文(Master Dissertation of Shanxi University), 2003.
[9] 蒋挺大(Jiang T D). 壳聚糖(Chitosan).北京:化学工业出版社(Beijing:Chemical Industry Press), 2006.
[10] 高鹏(Gao P).华中科技大学硕士论文(Master Dissertation of Huazhong University of Science and Technology), 2006.
[11] Nasirimoghaddam S, Zeinali S, Sabbaghi S. Journal of Industrial and Engineering Chemistry, 2015, 27:79.
[12] Crini G. Prog. Polym.Sci., 2005, 30:38.
[13] Matha B. Doctoral Dissertation of Royal Institute of Technology, 2008.
[14] 谢光勇(Xie G Y), 杜传青(Du C Q). 工业水处理(Industrial Water Treatment), 2009, 29(5):24.
[15] 胡惠媛(Hu H Y), 朱虹(Zhu H). 化学进展(Progress in Chemistry), 2012, 24(11):2212.
[16] Khalid Z E, Eric G. Chemical Engineering Journal, 2015, 81:345.
[17] Wang X H, Deng W Y, Xie Y Y, Wang C Y. Chemical Engineering Journal, 2013, 228:232.
[18] Jeon C, HÖll W H. Water Research, 2003, 37:477.
[19] Boricha A G, Murthy Z V P. Journal of Membrane Science, 2009, 339:239.
[20] Wijesena R N, Tissera N, Kannangara Y Y, Lin Y, Amaratunga G A J, Nalin de Silvaa K M. Carbohydrate Polymers, 2015, 117:731.
[21] Kim M K, Sundaram K S, Iyengar G A, Lee K P. Chemical Engineering Journal, 2015, 267:51.
[22] Liu T Y, Yang X, Wang Z L, Yan X X. Water Research, 2013, 47:6691.
[23] Shafaei A, Ashtiani F Z, Kaghazchi T. Chemical Engineering Journal, 2007, 133:311.
[24] Reena S, Nahar S, Sangeeta T, Sandeep K T, Sanjay R D. RSC Adv., 2015, 5:16622.
[25] 张晓敏(Zhang X M), 张力(Zhang L), 贺雪英(He X Y), 吴俊涛(Wu J T). 化学进展(Progress in Chemistry), 2014, 26(11):1832.
[26] Allouchea F N, Guibal E, Mameri N. Colloids and Surfaces A:Physicochem.Eng. Aspects, 2014, 446:224.
[27] Abdel Khalek M A, Mahmoud G A, El-Kelesh N A. Chemistry and Materials Research, 2012, 2(7):2224.
[28] Liu H C, Chen W, Cui B, Liu C. Journal of Central South University, 2015, 22(11):4168.
[29] Zhang Y L, Yan W W, Sun Z M, Pan C, Mi X, Zhao G, Gao J P. Carbohydrate Polymers, 2015, 117:657.
[30] Khalek M A A, Mahmoud G A, El-Kelesh N A. Chemistry and Materials Research, 2012, 2(7):1.
[31] Chang Y H, Hsieh K H, Chang F C. Journal of Applied Polymer Science, 2009, 112:2445.
[32] Osifo P O, Webster A, Hein M, Neomagus H W J P, Gun M A, Grant D M. Bioresource Technology, 2008, 99:7377.
[33] Miretzkya P, Cirelli A F. Journal of Hazardous Materials, 2009, 167:10.
[34] Merrifield J D, Davids W G, MacRae J D, Amirbahman A.Water Research, 2004, 38:3132.
[35] 庞娅(Pang Y). 湖南大学博士论文(Doctoral Dissertation of Hunan University), 2012.
[36] 周莅霖(Zhou L L), 况锦铭(Kuang J M), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2009, 21(9):1880.
[37] 张显(Zhang X), 吴天星(Wu T X), 宋小平(Song X P), 张云霞(Zhang Y X), 汪国忠(Wang G Z). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2015,48(8):1143.
[38] Karthik R, Meenakshi S. Chemical Engineering Journal, 2015, 263:168.
[39] Wang Z D, Zheng L C, Li C C, Zhang D, Xiao Y N, Guan G H, Zhu W X. Carbohydrate Polymers, 2013, 94:505.
[40] 徐玉婷(Xu Y T), 张灿(Zhang C). 中国药科大学学报(Journal of China Pharmaceutical University), 2010, 41(6):481.
[41] Wang Y, Qi Y F, Li Y F, Wu J J, Ma X J, Yu C, Ji L. Journal of Hazardous Materials, 2013, 260:9.
[42] 邵坚(Shao J), 祝丹丹(Zhu D D), 刘俊(Liu J). 环境科学与技术(Environmental Science & Technology), 2007, 30(6):6.
[43] Donia A M, Atia A A, Elwakeel K Z. Journal of Hazardous Materials, 2008,151:372.
[44] Wang L, Xing R E, Liu S, Cai S B, Yu H H, Feng J H, Li R F, Li P C. International Journal of Biological Macromolecules, 2010, 46:524.
[45] Wang F, Zheng Y, Zhu Y F, Wang A Q. Water Air Soil Pollut., 2016, 227:110.
[46] Zhu F Y, Zheng Y, Wang W B, Wang A Q. Journal of Water Process Engineering, 2015, 7:218.
[47] Zhang G Y, Qu R J, Sun C M, Ji C N, Chen H, Wang C H, Niu Y Z. Journal of Applied Polymer Science, 2008, 110:2321.
[48] Qu R J, Sun C M, Ma F, Zhang Y, Ji C N, Xu Q, Wang C H, Chen H. Journal of Hazardous Materials, 2009, 167:717.
[49] Shi D C, Yan F Y, Wang M, Zou Y, Zheng T C, Zhou X G, Chen L. Materials Research Bulletin, 2015, 70:958.
[50] Shi D C, Yan F Y, Zhou X G, Zheng T C, Shi Y Y, Fu W G, Chen L. Microchim Acta, 2016, 183:319.
[51] Kushwaha S, Sreedhar B, Padmaja P. Journal of Chemical & Engineering Data, 2010, 55(11):4691.
[52] Kushwaha S, Sudhakar P P. Carbohydrate Polymers, 2011, 86:1055.
[53] Liu Y S, Chen W B, Kim H. Journal of Macromolecular Science Part A:Pure and Applied Chemistry, 2012, 49:242.
[54] Zhang X Y, Ding S M, Wang Y T, Feng X H, Peng Q, Ma S L. Journal of Applied Polymer Science, 2006, 100:2705.
[55] Park S I, Kwak I S, Won S W, Yun Y S. Journal of Hazardous Materials, 2013, 248/249:211.
[56] 袁毅桦(Wang Y H), 雷莉(Lei L), 何慧(He H), 贾德民(Jia D M). 华南理工大学学报(自然科学版)(Journal of South China University of Technology(Natural Science Edition)), 2012, 40(7):148.
[57] Vieira R S, Beppu M M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2006, 279:196.
[58] Xu F Q, Zhang N N, Long Y, Si Y M, Liu Y, Mi X, Wang X D, Xing F B, You X D, Gao J P. J. Hazard. Mater., 2011, 188(1/3):148.
[59] RabeloR B, Vieira R S, Luna F M T, Guibal E, Beppu M M. Adsorption Science & Technology, 2011, 30(1):1.
[60] Oshita K, Oshima M, Gao Y H, Lee K H, Motomizu S. Anal. Sci., 2002, 18:1121.
[61] Tao X, Li K, Yan H, Yang H, Li A M. Environmental Pollution, 2016, 209:21.
[62] Chen X J, Cai J C, Zhang Z H, Liu L J, Yang G L. Colloid Polym. Sci., 2014, 292:2157.
[63] Rocha, L S, Almeida Â, Nunes C, Henriques B, Coimbra M A, Lopes C B, Silva C M, Duarte A C, Pereira E. Chemical Engineering Journal, 2016, 300:217.
[64] Zhou L M, Liu Z R, Liu J H, Huang Q W. Desalination, 2010, 258:41.
[65] Monier M, Abdel-Latif D A. Journal of Hazardous Materials, 2012, 209/210:240.
[66] Zhou L M, Wang Y P, Liu Z R, Huang Q W. Journal of Hazardous Materials, 2009, 161:995.
[67] Wang X H, Yang L, Zhang J P, Wang C Y, Li Q Y. Chemical Engineering Journal, 2014, 251:404.
[68] Li K, Wang Y W, Huang M, Yan H, Yang H, Xiao S J, Li A M. Journal of Colloid and Interface Science, 2015, 455:261.
[69] Anirudhan T S, Divya L., Arsenic P J. J. Chem. Technol. Biotechnol., 2013, 88:878.
[70] 范立群(Fan L Q), 隋吴彬(Sui W B). 化学进展(Progress in Chemistry), 2013, 32(8):1832.
[71] Zhou L, Xiong W, Liu S. J. Mater. Sci., 2015, 50:769.
[72] Sreeprasad T S, Maliyekkal S M, Lisha K P, Pradeep T. Journal of Hazardous Materials, 2011, 186:921.
[73] Liu S L, Kang M M, Yan F F, Peng D L, Yang Y Q, He L H, Wang M H, Fang S M, Zhang Z H. Electrochimica Acta, 2015,160:64.
[74] Nivethaa E A K, Narayanan V, Stephen A. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 14:242.
[75] 彭先佳(Peng X J), 贾建军(Jia J J), 栾兆坤(Luan Z K), 王军(Wang J). 化学进展(Progress in Chemistry), 2009, 21(9):1987.
[76] Moghimi A. African Journal of Pure and Applied Chemistry, 2012, 6(12):195.
[77] Shawky H A, El-Aassar A H M, Abo-Zeid D E. Journal of Applied Polymer Science, 2012, 125(1):E93.
[78] 刘榆(Liu Y), 傅瑞琪(Fu R Q), 楼子墨(Lou Z M), 方文哲(Fang W Z), 王卓行(Wang Z X), 徐新华(Xu X H). 化学进展(Progress in Chemistry), 2015, 27(11):1665.
[79] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Progress in Materials Science, 2012, 57:1061.
[80] Ziaei E, Mehdinia A, Jabbari A. Analytica Chimica Acta, 2014, 850:49.
[81] Kyzas G Z, Travlou N A, Deliyanni E A.Colloids and Surfaces B:Biointerfaces, 2014, 113:467.
[82] Hu H T, Wang X B, Wang J C, Liu F M, Zhang M, Xu C H. Applied Surface Science, 2011, 257:2637.
[83] 高鹏(Gao P), 向军(Xiang J), 张安超(Zhang A C). 中国环境科学(China Environmental Science), 2010, 30(6):733.
[84] 张安超(Zhang A C), 孙路石(Sun L S), 向军(Xiang J), 高鹏(Gao P), 胡松(Hu S), 徐朝芬(Xu C F), 付鹏(Fu P). 工程热物理学报(Journal of Engineering Themophysics), 2010, 31(9):1607.
[85] 张安超(Zhang A C), 向军(Xiang J), 胡松(Hu S), 盛伟(Sheng W), 刘志超(Liu Z C). 中国电机工程学报(Proceedings of the Chinese Society for Electrical Engineering), 2013, 33(29):18.
[86] Gao P, Gao B B, Gao J Q, Zhang K, Chen Y J, Yang Y P, Chen H W. IOP Conf. Series:Materials Science and Engineering, 2016, DOI:10.1088/1757-899X/137/1/012008.
[87] 高鹏(Gao P), 杨勇平(Yang Y P), 高彬彬(Gao B B), 高建强(Gao J Q), 张锴(Zhang K), 陈鸿伟(Chen H W), 樊海丽(Fan H L). 工程热物理年会(Engineering Thermo Physics Annual Meeting),中国,北京, 2015, 10.23.
[88] 苑春刚(Yuan C G), 张艳(Zhang Yan), 张扬阳(Zhang Y Y). 中国发明专利:CN102553526B, 2014.
[89] Lesa B, Aneggi E, Rossi G, Goi D. Journal of Hazardous Materials, 2009,171(1/3):647.
[90] Wang J X, Feng X B, Christopher W N, Shang L H. J. Hazard Mater., 2012, 221/222:1.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[8] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[9] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[12] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[13] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[14] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[15] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.