中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 792-802 DOI: 10.7536/PC191122 Previous Articles   Next Articles

• Review •

Electrochromic Energy-Storage Devices Based on Inorganic Materials

Zhan Wu1, Xiaohan Li1, Aowei Qian1, Jiayu Yang1, Wenkui Zhang1, Jun Zhang1,**()   

  1. 1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
  • Contact: Jun Zhang
  • Supported by:
    the National Natural Science Foundation of China(51777194); the Zhejiang Provincial Natural Science Foundation(LR20E020002); the Zhejiang Provincial Xinmiao Talent Project(2018R403001)
Richhtml ( 90 ) PDF ( 1842 ) Cited
Export

EndNote

Ris

BibTeX

Electrochromism and electrochemical energy-storage share the same electrochemical principles of redox reaction that occurs when the charge is inserted or removed in the electrode. An electrochemical device that integrates electrochromic and electrochemical energy storage functions is defined as an electrochromic energy-storage device. Although single-function electrochromic devices and electrochemical energy-storage devices have been widely reported and commercialized, the research on electrochromic energy storage devices is still in the experimental stage. Such devices can change their transmittance in the visible or even infrared range while electrochemically storing energy, and can indicate the state of charge of the device with color change, providing a new application prospect for electrochemical devices. Electrochromic energy-storage devices mainly include electrochromic supercapacitors, electrochromic batteries, and photo-driven electrochromic smart windows. Electrochromic supercapacitors and electrochromic batteries are composed of positive and negative electrodes with materials having both electrochromic effects and charge storage properties, and photo-driven electrochromic smart windows include an additional photoelectric conversion component. These devices can be used in building energy-saving smart windows, static displays, smart sensors, etc. In addition, when fabricated on flexible substrates, these wearable electrochromic energy-storage devices have potential applications in smart apparel, implanted displays and electronic skins. In this review, we discuss the electrochromic energy-storage devices from the basic principles, research progress, application fields, and future research prospects.

Contents

1 Introduction
2 Electrochromic batteries
3 Electrochromic supercapacitors
4 Photo-driven electrochromic devices
5 Flexible electrochromic energy-storage devices
6 Conclusion and outlook
Fig. 1 Structure and mechanism of the EC devices[4]
Fig. 2 Representative structure and working mechanism of electrochromic energy-storage devices
Fig. 3 (a) The working mechanism of the Al-tungsten oxide electrochromic battery;(b) the state of charge of the Al-tungsten oxide electrochromic battery is associated with its transparency;(c) cyclic voltammetry(CV) curve of the two electrode Al-tungsten oxide battery in AlCl3(1 M aqueous) between 0~1.2 V;(d) the first discharge capacity and the specific accumulative discharge capacity of the recovered Al-tungsten oxide electrochromic battery recharged by oxygen and $H_{2}O_{2}$[6]
Fig. 4 (a~c) Structure and working mechanism for the ZIEB electrochromic battery;(d) visible-near infrared transmittance spectrum of the battery measured before and after discharging;(e) in situ self-coloring process of the ZIEB;(f) galvanostatic charge and discharge curves of the WO3 anode at 0.5 mA·cm-2 between 0.1 and 1.2 V;(g) visible near-infrared transmittance spectra of WO3 cathode measured at 0.1 and 1.2 V in 1 M $ZnSO_{4}-AlC_{3}$[16, 17]
Fig. 5 CVs of Li4Ti5O12(a) and LiMn2O4(c) samples at various scan rates.(b) Transmittance spectra of a charged(blue) and discharged(black) Li4Ti5O12 transparent thin film electrode compared to the pure FTO-glass substrate(grey).(d) Transmittance spectra of a charged(orange) and uncharged(green) LiMn2O4 electrode. Optical photographs of a Li4Ti5O12 thin film electrode in its colorless discharged(e) and dark-blue colored charged state(f). The LiMn2O4 electrode showed a green color in the uncharged state(g) changing to orange when being charged(h)[24]
Fig. 6 (a) Optical photo of the bleached EC device, and(b) the EC device recovered for 1 h;(c) in bleached state with connected circuit showing no light from the LED;(d) in colored state with connected circuit powering a LED;(e) Transmittance spectra of the original self-powered PB/Al EC device(original curve) and the bleached device at various recovery times from 0, 5 min to 4 h;(f) galvanostatic discharge and charge curves of the PB/Al cell at a current density of 2000 mA·g-1 [26]
Fig. 7 (a) Cross-sectional electronic micrograph of a mesoporous V2O5 thin film on a FTO substrate;(b) structure,(c) photograph,(d) Ragone plot and (e) optical transmittance spectra of the electrochromic supercapacitor[34]
Fig. 8 (a) Schematic of a patterned supercapacitor electrode composed of W18O49 and PANI;(b1~5) Images of the supercapacitor electrode at several typical states;(c) CV curves of the PANI film, W18O49 nanowire film, and hybrid smart supercapacitor electrode;(d) areal capacitance values for the three electrodes[35];(e) the structure of the WO3/PANI electrochromic supercapacitors; and(f) the relation between time and color of the device under different potential(-1 ~ 1 V)[36]
Fig. 9 (a) XRD and structure of W18O49 NW;(b) SEM and TEM(inset) images of W18O49 NW;(c) CV curves at a scan rate of 10 mV·s-1,(d) in situ transmittance variation curve between colored and bleached state, and(e) coloration efficiency of the W18O49 nanowires film in 1.0 M PC-Al(ClO4)3, PC-LiClO4, PC-NaClO4 [13]
Fig. 10 (a)Schematic diagram of photochromic device driven by light[44];(b) two integration modes of DSSC system and electrochromic device(type Ⅰ and Ⅱ)[46];(c) photo of photochromic device driven by light;(d) photographs of photochromic device driven by light at different states[47]
Fig. 11 (a) Structure diagram of integrated photochromic and lithium-ion storage device;(b) electrochromic effect of photochromic device and lithium-ion battery integrated device[53];(c) mesoporous structured WO3 and PANI as electrodes for electrochromic devices[55]
Fig. 12 (a) CV curves of W18O49 NW/SCNTs composite electrodes under different bending degrees;(b) schematic diagram of nanostructured PANI prepared by combining CV and GS;(c) PANI film with good flexibility and electrochromic effect prepared by combining CV and GS[40];(d) schematic diagram of preparation process of flexible transparent supercapacitors[62]
[1]
Sadineni S B , Madala S , Boehm R F. Renew. Sustain.Energy Rev., 2011,15: 3617.
[2]
Deb S K. Appl. Opt., 1969,8: 192. https://www.ncbi.nlm.nih.gov/pubmed/20076124

pmid: 20076124
[3]
Granqvist C G . Handbook of Inorganic Electrochromic Materials. Amsterdam: Elsevier Science, 1995. 79.
[4]
Granqvist C G . Nanotechnology in Eco-efficient Construction. 2nd Ed. Woodhead Publishing, 2019. 467.
[5]
Yang P , Sun P , Mai W J . Mater Today, 2016,19: 394.
[6]
Zhao J , Tian Y , Wang Z , Cong S , Zhou D , Zhang Q , Yang M , Zhang W , Geng F , Zhao Z. Angew. Chem. Int. Ed., 2016,55: 7161.
[7]
Liu X Y , Gao Y Q , Yang G W . Nanoscale, 2016,8: 4227. https://www.ncbi.nlm.nih.gov/pubmed/26838964

doi: 10.1039/c5nr09145d pmid: 26838964
[8]
Tong Z Q , Tian Y L , Zhang H M , Li X G , Ji J Y , Qu H Y , Li N , Zhao J P , Li Y. Sci. Chin. Chem., 2017,60: 13.
[9]
Yoon J , Baca A J , Park S I , Elvikis P , Geddes J B , Li L , Kim R H , Xiao J , Wang S , Kim T H , Motala M J , Ahn B Y , Duoss E B , Lewis J A , Nuzzo R G , Ferreira P M , Huang Y , Rockett A , Rogers J A. Nat. Mater., 2008,7: 907. https://www.ncbi.nlm.nih.gov/pubmed/18836435

doi: 10.1038/nmat2287 pmid: 18836435
[10]
Li W , Sasaki A , Oozu H , Aoki K , Kakushima K , Kataoka Y , Nishiyama A , Sugii N , Wakabayashi H , Tsutsui K , Natori K , Iwai H . Microelectron.Reliab., 2015,55: 402.
[11]
Duan X C , Xiao S H , Wang L L , Huang H , Liu Y , Li Q H , Wang T H . Nanoscale, 2015,7: 2230. https://www.ncbi.nlm.nih.gov/pubmed/25563400

pmid: 25563400
[12]
Li P , Li X , Zhao Z Y , Wang M S , Fox T , Zhang Q , Zhou Y . Electrochim. Acta, 2016,192: 148.
[13]
Tian Y Y , Zhang W K , Cong S , Zheng Y C , Geng F X , Zhao Z G. Adv. Funct. Mater., 2015,25: 5833. http://doi.wiley.com/10.1002/adfm.201502638

doi: 10.1002/adfm.201502638
[14]
Zheng M B , Tang H , Hu Q , Zheng S S , Li L L , Xu J , Pang H. Adv. Funct. Mater., 2018,28: 1707500.
[15]
Chang X , Hu R , Sun S , Liu J , Lei Y , Liu T , Dong L , Yin Y. Appl. Surf. Sci., 2018,441: 105.
[16]
Li H , McRae L, Firby C J, Elezzabi A Y. Adv. Mater., 2019,31: 1807065.
[17]
Li H Z , Firby C J , Elezzabi A Y . Joule, 2019,3: 2268.
[18]
Giannuzzi R , Manca M , De Marco L , Belviso M R , Cannavale A , Sibillano T , Giannini C , Cozzoli P D , Gigli G . ACS Appl. Mater. Interfaces, 2014,6: 1933. https://pubs.acs.org/doi/10.1021/am4049833

doi: 10.1021/am4049833
[19]
Furutsuki S , Chung S C , Nishimura S , Kudo Y , Yamashita K , Yamada A . J. Phys. Chem. C, 2012,116: 15259.
[20]
Béléké A B , Faure C , Röder M , Hovington P , Posset U , Guerfi A , Zaghib K. Mater. Sci. Eng. B, 2016,214: 81.
[21]
Roscher V , Rittweger F , Riemschneider K R. ACS Appl. Mater. Interfaces, 2019,11: 6900. https://www.ncbi.nlm.nih.gov/pubmed/30557001

doi: 10.1021/acsami.8b16439 pmid: 30557001
[22]
Li S , Meng X , Yi Q , Alonso J A , Fernández-Díaz M T, Sun C, Wang Z L. Nano Energy, 2018,52: 510.
[23]
Nagai H , Hara H , Enomoto M , Mochizuki C , Honda T , Takano I , Sato M. Funct. Mater. Lett., 2013,06: 1341001.
[24]
Roeder M , Beleke A B , Guntow U , Buensow J , Guerfi A , Posset U , Lorrmann H , Zaghib K , Sextl G . [J]. Power Sources, 2016,301: 35.
[25]
Mandal J , Du S C , Dontigny M , Zaghib K , Yu N F , Yang Y. Adv. Funct. Mater., 2018,28: 1802180. http://doi.wiley.com/10.1002/adfm.v28.36

doi: 10.1002/adfm.v28.36
[26]
Wang J , Zhang L , Yu L , Jiao Z , Xie H , Lou X W , Sun X W. Nat. Commun., 2014,5: 4921. https://www.ncbi.nlm.nih.gov/pubmed/25247385

doi: 10.1038/ncomms5921 pmid: 25247385
[27]
Pan J , Zheng R , Wang Y , Ye X , Wan Z , Jia C , Weng X , Xie J , Deng L. Sol. Energy Mater. Sol. Cells, 2020,207: 110337.
[28]
陈旭丽 ( Chen X L ). 复旦大学博士学位论文( Doctoral Dissertation of Fudan University), 2014.
[29]
Gogotsi Y , Penner R M . ACS Nano, 2018,12: 2081. https://www.ncbi.nlm.nih.gov/pubmed/29580061

doi: 10.1021/acsnano.8b01914 pmid: 29580061
[30]
Shen L X , Du L H , Tan S Z , Zang Z G , Zhao C X , Mai W J. Chem. Commun., 2016,52: 6296.
[31]
Cai G , Wang X , Cui M , Darmawan P , Wang J , Eh A L S, Lee P S. Nano Energy, 2015,12: 258.
[32]
Guo Q F , Li J J , Zhang B , Nie G M , Wang D B. ACS Appl. Mater. Interfaces, 2019,11: 6491. https://www.ncbi.nlm.nih.gov/pubmed/30665294

pmid: 30665294
[33]
陈永博 ( Chen Y B ). 中国科学院大学博士学位论文( Doctoral Dissertation of University of Chinese Academy of Sciences), 2019.
[34]
Wei D , Scherer M R , Bower C , Andrew P , Ryhanen T , Steiner U . Nano Lett., 2012,12: 1857. https://www.ncbi.nlm.nih.gov/pubmed/22390702

pmid: 22390702
[35]
Tian Y , Cong S , Su W , Chen H , Li Q , Geng F , Zhao Z G. Nano Lett., 2014,14: 2150. https://www.ncbi.nlm.nih.gov/pubmed/24593047

doi: 10.1021/nl5004448 pmid: 24593047
[36]
Wu X , Wang Q , Zhang W , Wang Y , Chen W . Synth. Metals, 2016,220: 494.
[37]
Chen J , Wang Z , Chen Z , Cong S , Zhao Z . Nano Lett., 2020,20: 1915. https://www.ncbi.nlm.nih.gov/pubmed/32091911

pmid: 32091911
[38]
Lin M C , Gong M , Lu B , Wu Y , Wang D Y , Guan M , Angell M , Chen C , Yang J , Hwang B J , Dai H . Nature, 2015,520: 325. https://www.ncbi.nlm.nih.gov/pubmed/25849777

pmid: 25849777
[39]
Li Z , Xiang K , Xing W , Carter W C , Chiang Y M. Adv. Energy Mater., 2015,5: 1401410.
[40]
Li K , Shao Y , Liu S , Zhang Q , Wang H , Li Y , Kaner R B . Small, 2017,13: 1700380.
[41]
Zhang S , Cao S , Zhang T , Yao Q , Lin H , Fisher A , Lee J Y . Small Methods, 2020,4: 1900545.
[42]
Granqvist C G . Thin Solid Films, 2014,564: 1.
[43]
Cho J , Yun T Y , Noh H Y , Baek S H , Nam M , Kim B , Moon H C , Ko D H. Adv. Funct. Mater., 2020,30: 1909601.
[44]
Leftheriotis G , Syrrokostas G , Yianoulis P. Sol. Energy Mater.Sol. Cells, 2010,94: 2304.
[45]
Barachevsky V A , Butenko V G. Russ. J. Gen. Chem., 2018,88: 2747.
[46]
Xie Z , Jin X , Chen G , Xu J , Chen D , Shen G . Chem. Commun., 2014,50: 608.
[47]
Leftheriotis G , Syrrokostas G , Yianoulis P. Sol. Energy Mater. Sol. Cells, 2012,96: 86. https://linkinghub.elsevier.com/retrieve/pii/S0927024811005009

doi: 10.1016/j.solmat.2011.09.014
[48]
Bechinger C , Ferrer S , Zaban A , Sprague J , Gregg B A . Nature, 1996,383: 608.
[49]
Syrrokostas G , Leftheriotis G , Yianoulis P . Solid State Ionics, 2015,277: 11.
[50]
Dokouzis A , Theodosiou K , Leftheriotis G. Sol. Energy Mater. Sol. Cells, 2018,182: 281. https://linkinghub.elsevier.com/retrieve/pii/S092702481830151X

doi: 10.1016/j.solmat.2018.03.039
[51]
Liu Y , Shen H , Chen W , Wang H , Deng Y J , Wang D H. Chin. Sci. Bull., 2008,53: 3173.
[52]
Xu Z J , Li W F , Huang J N , Guo X , Liu Q , Yu R , Miao W N , Zhou B Y , Guo W X , Liu X Y . Nano Energy, 2019,63: 103830.
[53]
Wang Z , Chiu H C , Paolella A , Zaghib K , Demopoulos G P . ChemSusChem, 2019,12: 2220. https://www.ncbi.nlm.nih.gov/pubmed/30770645

pmid: 30770645
[54]
谢思杰 ( Xie S J ). 中国科学院大学硕士学位论文( Master Dissertation of University of Chinese Academy of Sciences), 2019.
[55]
Wang W Q , Wang X L , Xia X H , Yao Z J , Zhong Y , Tu J P . Nanoscale, 2018,10: 8162. https://www.ncbi.nlm.nih.gov/pubmed/29676415

doi: 10.1039/c8nr00790j pmid: 29676415
[56]
王伟齐 ( Wang W Q ). 浙江大学硕士学位论文( Master Dissertation of Zhejiang University), 2019.
[57]
Zhang J , Tu J P , Xia X H , Wang X L , Gu C D . [J]. Mater. Chem., 2011,21: 5492. http://xlink.rsc.org/?DOI=c0jm04361c

doi: 10.1039/c0jm04361c
[58]
Zhang J , Wang X L , Xia X H , Gu C D , Tu J P. Sol. Energy Mater. Sol. Cells, 2011,95: 2107.
[59]
Zhang J , Tu J P , Zhang D , Qiao Y Q , Xia X H , Wang X L , Gu C D . [J]. Mater. Chem., 2011,21: 17316. http://xlink.rsc.org/?DOI=c1jm13069b

doi: 10.1039/c1jm13069b
[60]
Zhou D , Shi F , Xie D , Wang D H , Xia X H , Wang X L , Gu C D , Tu J P . [J]. Colloid Interface Sci., 2016,465: 112.
[61]
Cai G , Wang J , Lee P S. Acc. Chem. Res., 2016,49: 1469. https://www.ncbi.nlm.nih.gov/pubmed/27404116

doi: 10.1021/acs.accounts.6b00183 pmid: 27404116
[62]
Zhou K , Wang H , Jiu J , Liu J , Yan H , Suganuma K. Chem. Eng. J., 2018,345: 290. https://linkinghub.elsevier.com/retrieve/pii/S1385894718305333

doi: 10.1016/j.cej.2018.03.175
[63]
Chen T , Xue Y , Roy A K , Dai L . ACS Nano, 2014,8: 1039. https://www.ncbi.nlm.nih.gov/pubmed/24350978

doi: 10.1021/nn405939w pmid: 24350978
[64]
Kanninen P , Luong N D , Sinh le H, Anoshkin I V, Tsapenko A, Seppala J, Nasibulin A G, Kallio T. Nanotechnology, 2016,27: 235403. https://www.ncbi.nlm.nih.gov/pubmed/27122323

pmid: 27122323
[65]
陈燕丽 ( Chen Y L ). 暨南大学硕士学位论文( Master Dissertation of Jinan University), 2016.
[66]
Wu H , Kong D , Ruan Z , Hsu P C , Wang S , Yu Z , Carney T J , Hu L , Fan S , Cui Y . Nat. Nanotechnol., 2013,8: 421. https://www.ncbi.nlm.nih.gov/pubmed/23685985

doi: 10.1038/nnano.2013.84 pmid: 23685985
[67]
Ginting R T , Ovhal M M , Kang J W . Nano Energy, 2018,53: 650.
[68]
Guo X , Xu Z , Huang J , Zhang Y , Liu X , Guo W . Mater.Lett., 2019,244: 92.
[69]
Zhang D N , Sun B L , Huang H , Gan Y P , Xia Y , Liang C , Zhang W K , Zhang J . Materials, 2020,13: 1206.
[1] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[2] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[3] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[4] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[5] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[6] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[7] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[8] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[9] Jin Du, Rui Liao, Xinglin Zhang, Huibin Sun, Wei Huang. The Classification of Electrofluorochromism Materials and Color Change Mechanisms [J]. Progress in Chemistry, 2018, 30(2/3): 286-294.
[10] Di Xu, Hujiang Shen*, Huihui Yuan, Wei Wang, Junjie Xie. Poly(3, 4-Ethylenedioxythiophene) Based Electrode Materials: Preparation, Modification and Application in Electronic Devices [J]. Progress in Chemistry, 2018, 30(2/3): 252-271.
[11] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[12] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[13] Meng Haowen, Ma Daqian, Yu Xiaohui, Yang Hongyan, Sun Yanli, Xu Xinhua. Tin-Metal-Carbon Composite Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(8): 1110-1122.
[14] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[15] Liu Xin, Zhao Hailei, Xie Jingying, Wang Ke, Lv Pengpeng, Gao Chunhui. SnS2 Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(09): 1586-1595.