中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1090-1101 DOI: 10.7536/PC121108 Previous Articles   Next Articles

• Review •

Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives

Su Bin1, Zhao Jing1, Liu Chunbo2*, Che Guangbo1*, Wang Qingwei2, Xu Zhanlin2   

  1. 1. College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, China;
    2. College of Chemistry, Jilin Normal University, Siping 136000, China
  • Received: Revised: Online: Published:
PDF ( 1191 ) Cited
Export

EndNote

Ris

BibTeX

Organic light-emitting diodes (OLEDs) have emerged as a potential candidate for new flat panel display due to their advantages such as low driving voltage, high brightness and luminous efficiency. Since tris(8-hydroxyquinolinato)aluminum (Alq3)-based double layer thin-film device was prepared, much progress has been made in new electroluminescence (EL) materials which were designed and synthesized by researchers. Organic metal complexes based on 8-hydroxyquinoline and its derivatives are widely used due to simple synthesis, high luminance and efficiency as well as superior film morphology. This paper sketches the advantages, construction and working mechanism of OLEDs and stresses the research progress in small molecular organic EL materials based on 8-hydroxyquinoline and its derivatives as ligands. This article is written basically from the molecular design point of view and aims at the significant developments in metal organic complexes based on 8-hydroxyquinoline and its derivatives that have been designed and synthesized intentionally for OLEDs. Firstly, organic metal complexes based on 8-hydroxyquinoline as single ligand show favourable characteristics such as excellent electron-transport capability, high brightness and employment as host materials. Secondly, the EL colors could be tuned by modification of substituents at phenoxide or pyridine ring. Thirdly, the usage of mixed ligand can increase glass transition temperature and decorate morphology of film then result in high efficiency and stability. In the end, the current status, existing issues and prospects in this field are also discussed. Contents
1 Introduction
2 Structure and working mechanism of OLEDs
2.1 Structure of OLEDs
2.2 Working mechanism of OLEDs
3 Application of 8-hydroxyquinoline organic metal complexes in OLED
3.1 8-Hydroxyquinoline as single ligand
3.2 Derivatives of 8-hydroxyquinoline as ligands
3.3 Complexes of mixed-ligands
4 Conclusion and outlook

CLC Number: 

[1] Pope M, Kallmann H P, Magnante P. J. Chem. Phys., 1963, 38: 2042-2043
[2] Vincett P S, Barlow W A, Hann R A, Roberts G G. Thin Solid Films, 1982, 94: 171-183
[3] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913-915
[4] Lee J, Hofmann S, Thomschke M, Furno M, Kim Y H, Lüssem B, Leo K. Appl. Phys. Lett., 2011, 99: art. no. 073303
[5] Yang Q, Hao Y Y, Wang Z G, Li Y F, Wang H, Xu B S. Synth. Met., 2012, 162: 398-401
[6] Park J, Lee J, Noh Y Y. Org. Electron., 2012, 13: 184-194
[7] Moon B J, Yook K S, Lee J Y, Shin S, Hwang S H. J. Lumin., 2012, 132: 2557-2560
[8] Milián-Medina B, Gierschner J. Org. Electron., 2012, 13: 985-991
[9] Li T L, Li W L, Li X, Han L L, Chu B, Li M T, Hu Z Z, Zhang Z Q. Solid-State Electron., 2009, 53: 120-123
[10] Iwama Y, Itoh T, Mori T, Mizutani T. Thin Solid Films, 2006, 499: 364-368
[11] Chen W B, Lu L L, Cheng J B. Optik, 2010, 121: 107-112
[12] Kang I, Back J Y, Kim R, Kim Y H, Kwon S K. Dyes Pigm., 2011, 92: 588-595
[13] Kumar A, Srivastava R, Tyagi P, Mehta D S, Kamalasanan M N. Synth. Met., 2011, 161: 1172-1176
[14] Divayana Y, Liu S W, Kyaw A K K, Sun X W. Org. Electron., 2011, 12: 1-7
[15] Uddin A, Lee C B, Wong J. J. Lumin., 2011, 131: 1037-1041
[16] Lee C B, Uddin A, Andersson T G. Solid State Commun., 2007, 142: 206-211
[17] Kim M S, Lim J T, Jeong C H, Lee J H, Yeom G Y. Thin Solid Films, 2006, 515: 891-895
[18] Park H C, Park J W, Oh S G. Curr. Appl. Phys., 2010, 10: 1103-1107
[19] Hamada Y, Sano T, Fujita M, Fujii T, Nishio Y, Shibata K. Jpn. J. Appl. Phys., 1993, 32: L514-L515
[20] 郝玉英(Hao Y Y), 王华(Wang H), 郝海涛(Hao H T), 周禾丰(Zhou H F), 刘旭光(Liu X G), 许并社(Xu B S). 发光学报(Chinese Journal of Luminescence), 2004, 25(11): 419-424
[21] 朱海华(Zhu H H), 陈金伙(Chen J H), 胡加兴(Hu J X), 张福甲(Zhang F J). 功能材料与器件学报(Journal of Functional Materials and Devices), 2007, 13(1): 90-94
[22] Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K. J. Mater. Chem., 2000, 10: 157-161
[23] Burrows P E, Sapochak L S, McCarty D M, Forrest S R, Thompson M E. Appl. Phys. Lett., 1994, 64: 2718-2720
[24] 彭俊彪(Peng J B), 孙润光(Sun R G), 马於光(Ma Y G), 刘式墉(Liu S Y). 发光学报(Chinese Journal of Luminescence), 1994, 15(3): 263-266
[25] Xiang H F, Xu Z X, Roy V A L, Yan B P, Chan S C, Che C M, Lai P T. Appl. Phys. Lett., 2008, 92: art. no. 163305
[26] Hopkins T A, Meerholz K, Shaheen S, Anderson M L, Schmidt A, Kippelen B, Padias A B, Hall H K Jr, Peyghambarian N, Armstrong N R. Chem. Mater., 1996, 8: 344-351
[27] Pohl R, Anzenbacher P Jr. Org. Lett., 2003, 5: 2769-2772
[28] Montes V A, Li G, Pohl R, Shinar J, Anzenbacher P Jr. Adv. Mater., 2004, 16: 2001-2003
[29] Montes V A, Pohl R, Shinar J, Anzenbacher P Jr. Chem. Eur. J., 2006, 12: 4523-4535
[30] Pohl R, Montes V A, Shinar J, Anzenbacher P Jr. J. Org. Chem., 2004, 69: 1723-1725
[31] Liu N, Shi M M, Li Y Z, Shi Y W, Ran G Z, Qin G G, Wang M, Chen H Z. J. Lumin., 2011, 131: 199-205
[32] Fazaeli Y, Amini M M, Najafi E, Mohajerani E, Janghouri M, Jalilian A, Ng S W. J. Fluoresc., 2012, 22: 1263-1270
[33] Zlojutro V, Sun Y, Hudson Z M, Wang S N. Chem. Commun., 2011, 47: 3837-3839
[34] Gahungu G, Zhang J P. J. Phys. Chem. B, 2005, 109: 17762-17767
[35] Mishra A, Nayak P K, Periasamy N. Tetrahedron Lett., 2004, 45: 6265-6268
[36] Li L H, Xu B. Tetrahedron, 2008, 64: 10986-10995
[37] Ghedini M, Deda M L, Aiello I, Grisolia A. Inorg. Chim. Acta, 2004, 357: 33-40
[38] Xie J T, Ning Z J, Tian H. Tetrahedron Lett., 2005, 46: 8559-8562
[39] Kido J, Iizumi Y. Chem. Lett., 1997, 26: 963-964
[40] Matsumura M, Akai T. Jpn. J. Appl. Phys., 1996, 35: 5357-5360
[41] Yu J S, Chen Z J, Sakuratani Y, Suzuki H, Tokita M, Miyata S. Jpn. J. Appl. Phys., 1999, 38: 6762-6763
[42] Sapochak L S, Padmaperuma A, Washton N, Endrino F, Schmett G T, Marshall J, Fogarty D, Burrows P E, Forrest S R. J. Am. Chem. Soc., 2001, 123: 6300-6307
[43] Omar W A E, Haverinen H, Hormi O E O. Tetrahedron, 2009, 65: 9709-9712
[44] Heiskanen J P, Hormi O E O. Tetrahedron, 2009, 65: 8244-8249
[45] Irfan A, Cui R H, Zhang J P, Hao L Z. Chem. Phys., 2009, 364: 39-45
[46] Kumar A, Srivastava R, Bawa S S, Singh D, Singh K, Chauhan G, Singh I, Kamalasanan M N. J. Lumin., 2010, 130: 1516-1520
[47] 周亚东(Zhou Y D), 曾和平(Zeng H P), 靖慧莲(Jing H L), 袁国赞(Yuan G Z), 欧阳新华(OuYang X H). 有机化学(Chinese Journal of Organic Chemistry), 2006, 26(6): 783-792
[48] 杜乃婴(Du N Y), 梅群波(Mei Q B), 吕满庚(Lü M G). 功能材料(Journal of Functional Materials), 2004, 35(z1): 238-246
[49] 赵玉玲(Zhao Y L), 俞天智(Yu T Z). 材料导报(Materials Review), 2007, 21(4): 21-25
[50] 周瑞(Zhou R), 安忠维(An Z W), 柴生勇(Chai S Y). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2004, 24(8): 922-926
[51] Shi Y W, Shi M M, Huang J C, Chen H Z, Wang M, Liu X D, Ma Y G, Xu H, Yang B. Chem. Commun., 2006, (18): 1941-1943
[52] 陈柳青(Chen L Q), 刘旭光(Liu X G), 许慧侠(Xu H X), 王华(Wang H), 许并社(Xu B S). 中国材料进展(Materials China), 2009, 28(3): 22-25
[53] Tao X T, Suzuki H, Wada T, Miyata S, Sasabe H. J. Am. Chem. Soc., 1999, 121: 9447-9448
[54] Yin S G, Hua Y L, Chen X H, Yang X H, Hou Y B, Xu X R. Synth. Met., 2000, 111/112: 109-112
[55] Ma D G, Wang G, Hu Y F, Zhang Y G, Wang L X, Jing X B, Wang F S, Lee C S, Lee S T. Appl. Phys. Lett., 2003, 82: 1296-1298
[56] Yang K S, Shin H K, Kim C, Kwon Y S. Synth. Met., 2005, 152: 245-248
[57] Yang K S, Lee H S, Kim S U, Jang Y K, Kim D S, Shin H K, Kwon Y S, Kim C. Int. J. Nanosci., 2006, 5: 859-864
[58] Ghedini M, Deda M L, Aiello I, Grisolia A. Synth. Met., 2003, 138: 189-192
[59] Du N Y, Mei Q B, Lu M G. Synth. Met., 2005, 149: 193-197
[60] Mishra A, Periasamy N, Patankar M P, Narasimhan K L. Dyes Pigm., 2005, 66: 89-97
[61] Shao Y, Qiu Y, Hu X M, Hong X Y. Chem. Lett., 2000, 29: 1068-1069
[62] Anderson S, Weaver M S, Hudson A J. Synth. Met., 2000, 111: 459-463
[63] Cui Y, Liu Q D, Bai D R, Jia W L, Tao Y, Wang S N. Inorg. Chem., 2005, 44: 601-609
[64] Kappaun S, Rentenberger S, Pogantsch A, Zojer E, Mereiter K, Trimmel G, Saf R, Möller K C, Stelzer F, Slugovc C. Chem. Mater., 2006, 18: 3539-3547
[65] Xu B S, Chen L Q, Liu X G, Zhou H F, Xu H X, Fang X H, Wang Y L. Appl. Pyhs. Lett., 2008, 92: art. no. 103305
[66] Petrova P K, Tomova R L, Stoycheva-Topalova R T, Kaloyanova S S, Deligeorgiev T G. J. Lumin., 2012, 132: 495-501
[67] Su B, Liu C B, Wang Q W, Che G B. Optoelectron. Adv. Mat., 2011, 5: 587-589
[68] 苏斌(Su B), 袁晶(Yuan J), 荣光怡(Rong G Y). 吉林师范大学学报(Journal of Jilin Normal University), 2011, 32(4): 126-128
[69] Jang H, Do L M, Kim Y, Kim J G, Zyung T, Do Y. Synth. Met., 2001, 121: 1669-1670
[70] Hamada Y, Kanno H, Sano T, Fujii H, Nishio Y, Takahashi H, Usuki T, Shibata K. Appl. Phys. Lett., 1998, 72: 1939-1941
[71] Giro G, Cocchi M, Marco P D, Fattori V, Dembech P, Rizzoli S. Synth. Met., 2001, 123: 529-533
[72] Pérez-Bolívar C, Montes V A, Anzenbacher P Jr. Inorg. Chem., 2006, 45: 9610-9612
[73] Leung L M, Lo W Y, So S K, Lee K M, Choi W K. J. Am. Chem. Soc., 2000, 122: 5640-5641
[74] Qiu Y, Shao Y, Zhang D Q, Hong X Y. Jpn. J. Appl. Phys., 2000, 39: 1151-1153
[75] Wong K Y, Lo C F, Sham W Y, Fong H H, So S K, Leung L M. Phys. Lett. A, 2004, 321: 194-198
[76] Wang G, He Y, Wang L X. Mater. Lett., 2008, 62: 2611-2614
[77] Qin Y, Kiburu I, Shah S, Jäkle F. Org. Lett., 2006, 8: 5227-5230
[78] Kwong C Y, Djuriši Dc' A B, Choy W C H, Li D, Xie M H, Chan W K, Cheah K W, Lai P T, Chui P C. Mat. Sci. Eng. B, 2005, 116: 75-81
[79] Itoh T, Mizutani T, Mori T. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 284/285: 594-598
[80] Chen P Y, Ueng H Y, Yokoyama M. J. Lumin., 2010, 130: 1764-1767
[81] Kim J H, Yoon D Y, Kim J W, Kim J J. Synth. Met., 2007, 157: 743-750
[82] Jung S O, Kim Y H, Kwon S K, Oh H Y, Yang J H. Org. Electron., 2007, 8: 349-356
[83] Wang Y, Hua Y L, Wu X M, Zhang L J, Hou Q C, Liu Q. Org. Electron., 2008, 9: 273-278
[84] Lim J T, Jeong C H, Lee J H, Yeom G Y, Jeong H K, Chai S Y, Lee I M, Lee W I. J. Organomet. Chem., 2006, 691: 2701-2707
[85] 邵炎(Shao Y), 刘宇宏(Liu Y H), 邱勇(Qiu Y). 功能材料(Journal of Functional Materials), 2001, 32(6): 662-663
[86] Katkova M A, IIichev V A, Konev A N, Bochkarev M N, Vitukhnovsky A G, Parshin M A, Pandey L, Auweraer M V. J. Appl. Phys., 2008, 104: art. no. 053706
[87] Shi L L, Geng Y, Gao H Z, Su Z M, Wu Z J. Dalton Trans., 2010, 39: 7733-7740
[88] Leung C F, Ng S M, Xiang J, Wong W Y, Lam M H W, Ko C C, Lau T C. Organometallics, 2009, 28: 5709-5714
[89] Kunkely H, Vogler A. Inorg. Chim. Acta, 2009, 362: 196-198
[90] Khreis O M, Gillin W P, Somerton M, Curry R J. Org. Electron., 2001, 2: 45-51
[91] Cheng Y M, Yeh Y S, Ho M L, Chou P T. Inorg. Chem., 2005, 44: 4594-4603
[92] Xu H, Huang L F, Guo L M, Zhang Y G, Ren X M, Song Y, Xie J. J. Lumin., 2008, 128: 1665-1672
[93] Ghedini M, Aiello I, Deda M L, Grisolia A. Chem. Commun., 2003, 2198-2199
[94] Shavaleev N M, Adams H, Best J, Edge R, Navaratnam S, Weinstein J A. Inorg. Chem., 2006, 45: 9410-9415
[95] Kappaun S, Sax S, Eder S, Möller K C, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Müllen K, List E J W, Slugovc C. Chem. Mater., 2007, 19: 1209-1211
[96] Yi C, Yang C J, Liu J, Xu M, Wang J H, Cao Q Y, Gao X C. Inorg. Chim. Acta, 2007, 360: 3493-3498
[97] Niu J H, Li W L, Wei H Z, Li M T, Su W M, Xin Q, Zhang Z Q, Hu Z Z. J. Phys. D: Appl. Phys., 2005, 38: 1136-1139
[98] Lim J T, Lee M J, Lee N H, Ahn Y J, Lee C H, Hwang D H. Curr. Appl. Phys., 2004, 4: 327-330
[99] Nayak P K, Agarwal N, Ali F, Patankar M P, Narasimhan K L, Periasamy N. J. Chem. Sci., 2010, 122: 847-855
[100] Tyagi P, Srivastava R, Kumar A, Rai V K, Grover R, Kamalasanan M N. Synth. Met., 2010, 160: 756-761
[101] Kim D E, Kim W S, Kim B S, Lee B J, Kwon Y S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313/314: 320-323

[1] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[2] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[3] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[4] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[5] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[6] Zhiwen Yang, Yingying Zhan, Shaomin Ji, Qingdan Yang, Qi Li, Yanping Huo. Boron-Containing Organic Light-Emitting Diodes: Materials and Devices [J]. Progress in Chemistry, 2019, 31(6): 906-928.
[7] Qinshan Cai, Shirong Wang, Yin Xiao, Xianggao Li. Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials [J]. Progress in Chemistry, 2018, 30(8): 1202-1221.
[8] Kun Cao, Bei Yuan, Xue Liu, Minfang Wu, Zhen Yao*. Preparation and Applications of the Chiral Norbornene Derivatives [J]. Progress in Chemistry, 2017, 29(6): 605-616.
[9] Fu Kaiqiao, Zhang Guangyan, Jiang Xulin. Synthesis and Application of Polyaspartamide Derivatives for Drug/Gene Delivery [J]. Progress in Chemistry, 2016, 28(8): 1196-1206.
[10] Hu Xiangzheng, Wang Jianmin. Preparation and Application of Chenodeoxycholic Acid and Its Derivatives [J]. Progress in Chemistry, 2016, 28(6): 814-828.
[11] Gao Peng, Gao Binbin, Gao Jianqiang, Zhang Kai, Yang Yongping, Chen Hongwei. Chitosan and Its Composites for Removal of Mercury Ion from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(12): 1834-1846.
[12] Jiang He, Jin Jibiao, Chen Runfeng, Zheng Chao, Huang Wei. Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures [J]. Progress in Chemistry, 2016, 28(12): 1811-1823.
[13] Yang Lei, Cheng Tao, Zeng Wenjin, Lai Wenyong, Huang Wei. Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices [J]. Progress in Chemistry, 2015, 27(11): 1615-1627.
[14] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[15] Weng Xilun, Bao Zongbi, Luo Fei, Su Baogen, Yang Yiwen, Ren Qilong. Progress in Preparation and Applications of Cellulose Derivatives-Based Chiral Stationary Phase [J]. Progress in Chemistry, 2014, 26(0203): 415-423.