中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120747 Previous Articles   Next Articles

• Review •

Synthesis and Applications of Hexaphenylbenzene Derivatives

Peng Lianhui, Zhu Pengcheng, Zhang Chun*, Xu Huibi   

  1. National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received: Revised: Online: Published:
PDF ( 2521 ) Cited
Export

EndNote

Ris

BibTeX

With rigid and propeller-like structure, as well as toroidal delocalization, hexaphenylbenzene derivatives (HPBs) have been of considerable interest for a wide variety of applications in crystal engineering, porous polymers, organic electronic materials, and other scaffold materials. In this paper, the synthesis and applications of hexaphenylbenzene derivatives in these fields are reviewed. Contents
1 Introduction
2 Synthesis of HPB derivatives
3 Applications of HPB derivatives
3.1 Crystal engineering
3.2 Porous polymers
3.3 Organic electronic materials
3.4 Scaffold materials
4 Conclusions and outlook

CLC Number: 

[1] Pisula W, Feng X, M黮len K. Chem. Mater., 2011, 23: 554-567
[2] Feng X, Pisula W, M黮len K. Pure Appl. Chem., 2009, 81: 2203-2224
[3] M黮len K, Rabe J P. Acc. Chem. Res., 2008, 41: 511-520
[4] Wu J, Pisula W, M黮len K. Chem. Rev., 2007, 107: 718-747
[5] Yang X Y, Dou X, M黮len K. Chem. Asian J., 2008, 3: 759-766
[6] Hyatt J A. Org. Prep. Proced. Int., 1991, 23: 460-463
[7] Kobayashi K, Shirasaka T, Sato A, Horn E, Furukawa N. Angew. Chem. Int. Ed., 1999, 38: 3483-3485
[8] Kobayashi K, Shirasaka T, Horn E, Furukawa N. Tetrahedron Lett., 2000, 41: 89-93
[9] Zhang R, Wang L, Li M, Zhang X, Li Y, Shen Y, Zheng Q, Zeng Q, Wang C. Nanoscale, 2011, 3: 3755-3759
[10] Kobayashi K, Sato A, Sakamoto S, Yamaguchi K. J. Am. Chem. Soc., 2003, 125: 3035-3045
[11] Kobayashi K, Kobayashi N, Ikuta M, Therrien B, Sakamoto S, Yamaguchi K. J. Org. Chem., 2005, 70: 749 -752
[12] Maly K E, Gagnon E, Maris T, Wuest J D. J. Am. Chem. Soc., 2007, 129: 4306-4322
[13] Liu Y Z, Hu C H, Comotti A, Ward M D. Science, 2011, 333: 436-440
[14] Tsuzuki S, Fujii A. Phys. Chem. Chem. Phys., 2008, 10: 2584-2594
[15] Nishio M. CrystEngComm, 2004, 6: 130-158
[16] Gagnon E, Maris T, Arseneault P M, Maly K E, Wuest J D. Crystal Growth & Design, 2010, 10: 648-657
[17] Gagnon E, Rochefort A, Metivaud V, Wuest J D. Org. Lett., 2010, 12: 380-383
[18] Gagnon E, Halperin S D, Metivau V D, Maly K E, Wuest J D. J. Org. Chem., 2010, 75: 399-406
[19] Maly K E, Gagnonb E, Wuest J D. Chem. Commun., 2011, 5163-5165
[20] Maly K E, Maris T, Gagnon E, Wuest J D. Crystal Growth & Design, 2006, 6: 461-466
[21] Short R, Carta M, Bezzu C G, Fritsch D, Kariuki B M, McKeown N B. Chem. Commun., 2011, 6822-6824
[22] Budd P M, Elabas E S, Ghanem B S, Makhseed S, McKeown N B, Msayib K J, Tattershall C E, Wang D. Adv. Mater., 2004, 16: 456-459
[23] Ghanem B S, Hashem M, Harris K D M, Msayib K J, Xu M C, Budd P M, Chaukura N, Book D, Tedds S, Walton A, McKeown N B. Macromolecules, 2010, 43: 5287-5294
[24] Chen Q, Luo M, Wang T, Wang J X, Zhou D, Han Y, Zhang C S, Yan C G, Han B H. Macromolecules, 2011, 44: 5573-5577
[25] Kubel C, Chen S, M黮len K. Macromolecules, 1998, 31: 6014-6021
[26] Sun D, Rosokha S V, Kochi J K. Angew. Chem. Int. Ed., 2005, 44: 5133 -5136
[27] Rathore R, Burns C L, Abdelwahed S A. Org. Lett., 2004, 6: 1689-1692
[28] Lambert C, Nöll G. Chem. Eur. J. 2002, 8: 3467-3477
[29] Lambert C. Angew. Chem. Int. Ed., 2005, 44: 7337-7339
[30] Li Z A, Ye S H, Liu Y Q, Yu G, Wu W B, Qin J G, Li Z. J. Phys. Chem. B, 2010, 114: 9101-9108
[31] Pugh C, Percec V. J. Mater. Chem., 1991, 1: 765-773
[32] Geng Y H, Fechtenkötter A, M黮len K. J. Mater. Chem., 2001, 11: 1634-1641
[33] Miyajima D, Araoka F, Takezoe H, Kim J, Kato K, Takata M, Aida T. Angew. Chem. Int. Ed., 2011, 50: 7865-7869
[34] Clark C G Jr, Floudas G A, Lee Y J, Graf R, Spiess H W, M黮len K. J. Am. Chem. Soc., 2009, 131: 8537-8547
[35] Hiraoka S, Harano K, Shiro M, Ozawa Y, Yasuda N, Toriumi K, Shionoya M. Angew. Chem. Int. Ed., 2006, 45: 6488-6491
[36] Hiraoka S, Yamauchi Y, Arakane R, Shionoya M. J. Am. Chem. Soc., 2009, 131: 11646-11647
[37] Hiraoka S, Goda M, Shionoya M. J. Am. Chem. Soc., 2009, 131: 4592-4593
[38] Bhalla V, Vij V, Kumar M, Sharma P R, Kaur T. Org. Lett., 2012, 14: 1012-1015
[39] Chabre Y M, Brisebois P P, Abbassi L, Kerr S C, Fahy J V, Marcotte I, Roy R. J. Org. Chem., 2011, 76: 724-727
[40] Areephong J, Logtenberg H, Browne W R, Feringa B L. Org. Lett., 2010, 12: 2132-2135
[41] Li W S, Jiang D L, Suna Y, Aida T. J. Am. Chem. Soc., 2005, 127: 7700-7702
[42] Rathore R, Burns C L, Guzei I A. J. Org. Chem., 2004, 69: 1524-1530

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[13] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.