中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1222-1227 DOI: 10.7536/PC180207 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies

Xiaochun Tian1,2, Xue'e Wu1, Feng Zhao2*, Yanxia Jiang1*, Shigang Sun1   

  1. 1. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
    2. CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Research and Development Program of China(No.2017YFA0206500) and the National Natural Science Foundation of China(No.21777155, 21773198, U1705253, 21621091).
PDF ( 1367 ) Cited
Export

EndNote

Ris

BibTeX

Microbial extracellular electron transfer (EET) is the process that electrons generated from redox reactions transfer between inside of cells and extracellular electron donors/acceptors. This process accompanies with the energy transformation and substance conversion. Studies of microbial EET have attracted increasing interests in recent years because it is found to be significant to understand element biogeochemical cycle, anti-corrosion of metals, bioelectrochemical systems, etc. Electrochemical techniques have played important roles in EET mechanisms analysis, because these techniques are simple and available in studying electron transfer reactions at the interfacial region between electrode and solution. In this review, electrochemical integrated techniques used to study EET pathways including microelectrode, scanning electrochemical microscopy, three-electrode cell combined with optical microscopy and electrochemical spectroscopy are summarized. The functions and advantages of these integrated techniques are illustrated in detail. The EET pathways from macroscopic to microcosmic aspects are reviewed, which include four hierarchies:whole biofilm, redox reaction in microenvironment of biofilm, single cell, redox proteins or molecular. This review proposes that several advanced electrochemistry combined techniques can be useful for the investigation of microbial EET mechanisms in the future.
Contents
1 Introduction
2 Study of the electron transfer of microenvironment in biofilm by microelectrode and scanning electrochemical microscopy
3 Study of the electron transfer of single cell by three-electrode cell combined optical microscope
4 Study of the redox of protein or molecule by electrochemical spectroscopy
4.1 Electrochemical UV-visible spectroscopy
4.2 Electrochemical infrared spectroscopy
4.3 Electrochemical Raman spectroscopy
5 Conclusion and outlook

CLC Number: 

[1] Choi O, Sang B I. Biotechnol. Biofuel., 2016, 9:11.
[2] Rosenbaum M, Aulenta F, Villano M, Angenent L T. Bioresource Technol., 2011, 102(1):324.
[3] Lee J Y, Phung N T, Chang I S, Kim B H, Sung H C. FEMS Microbiol. Lett., 2003, 223(2):185.
[4] 肖勇(Xiao Y), 吴松(Wu S), 杨朝晖(Yang Z H), 郑越(Zheng Y), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2013, 25(10):1771.
[5] Liang F Y, Xiao Y, Zhao F. Chem. Eng. J., 2013, 218(Supplement C):147.
[6] Xiao Y, Zhang E H, Zhang J D, Dai Y F, Yang Z H, Christensen H E M, Ulstrup J, Zhao F. Sci. Adv., 2017, 3(7):e1700623.
[7] Harnisch F, Freguia S. Chemistry-An Asian Journal, 2012, 7(3):466.
[8] Babauta J T, Nguyen H D, Beyenal H. Environ. Sci. Technol., 2011, 45(15):6654.
[9] Babauta J T, Nguyen H D, Harrington T D, Renslow R, Beyenal H. Biotechnol. Bioeng., 2012, 109(10):2651.
[10] Nguyen H D, Renslow R, Babauta J, Ahmed B, Beyenal H. Sensor Actuat. B-Chem., 2012, 161(1):929.
[11] Wang Z J, Deng H, Chen L H, Xiao Y, Zhao F. Bioresource Technol., 2013, 132:387.
[12] Hu Z Q, Jin J, Abruña H D, Houston P L, Hay A G, Ghiorse W C, Shuler M L, Hidalgo G, Lion L W. Environ. Sci. Technol., 2006, 41(3):936.
[13] Liu X H, Ramsey M M, Chen X L, Koley D, Whiteley M, Bard A J. Proc. Natl. Acad. Sci., 2011, 108(7):2668.
[14] Abucayon E, Ke N, Cornut R, Patelunas A, Miller D, Nishiguchi M K, Zoski C G. Anal. Chem., 2014, 86(1):498.
[15] Kaya T, Nagamine K, Oyamatsu D, Shiku H, Nishizawa M, Matsue T. Lab Chip, 2003, 3(4):313.
[16] Koley D, Ramsey M M, Bard A J, Whiteley M. Proc. Natl. Acad. Sci., 2011, 108(50):19996.
[17] Zhang W J, Wu H K, Hsing I M. Electroanalysis, 2015, 27(3):648.
[18] 田晓春(Tian X C), 吴雪娥(Wu X E), 詹东平(Zhan D P), 赵峰(Zhao F), 姜艳霞(Jiang Y X), 孙世刚(Sun S G). 物理化学学报(Acta Physico-Chimica Sinca), 2019, 35(1):22.
[19] Hol F J H, Dekker C. Science, 2014, 346(6208), 1251821.
[20] Liu H, Newton G J, Nakamura R, Hashimoto K, Nakanishi S. Angew. Chem. Int. Ed., 2010, 49(37):6596.
[21] Gross B J, El-Naggar M Y. Rev. Sci. Instrum., 2015, 86(6):064301.
[22] Jiang X C, Hu J S, Fitzgerald L A, Biffinger J C, Xie P, Ringeisen B R, Lieber C M. Proc. Natl. Acad. Sci., 2010, 107(39):16806.
[23] Jiang X C, Hu J S, Petersen E R, Fitzgerald L A, Jackan C S, Lieber A M, Ringeisen B R, Lieber C M, Biffinger J C. Nature Commun., 2013, 4:2751.
[24] Shi L, Chen B W, Wang Z M, Elias D A, Mayer M U, Gorby Y A, Ni S S, Lower B H, Kennedy D W, Wunschel D S, Mottaz H M, Marshall M J, Hill E A, Beliaev A S, Zachara J M, Fredrickson J K, Squier T C. J. Bacteriol., 2006, 188(13):4705.
[25] Nakamura R, Ishii K, Hashimoto K. Angew. Chem. Int. Edit., 2009, 48(9):1606.
[26] Liu Y, Kim H, Franklin R R, Bond D R. ChemPhysChem, 2011, 12(12):2235.
[27] Jain A, Gazzola G, Panzera A, Zanoni M, Marsili E. Electrochim. Acta, 2011, 56(28):10776.
[28] Busalmen J P, Berná A, Feliu J M. Langmuir, 2007, 23(11):6459.
[29] Busalmen J P, Esteve-Núñez A, Berná A, Feliu J M. Angew. Chem. Int. Edit., 2008, 47(26):4874.
[30] Busalmen J P, Esteve-Nuñez A, Berná A, Feliu J M. Bioelectrochemistry, 2010, 78(1):25.
[31] Liu Y, Berná A, Climent V, Feliu J M. Sensor Actuat. B Chem., 2015, 209:781.
[32] You L X, Rao L, Tian X C, Wu R R, Wu X E, Zhao F, Jiang Y X, Sun S G. Electrochim. Acta, 2015, 170:131.
[33] Kuzume A, Zhumaev U, Li J F, Fu Y C, Fueg M, Estevez M, Borjas Z, Wandlowski T, Esteve-Nunez A. Phys. Chem. Chem. Phys., 2014, 16(40):22229.
[34] Kuzume A, Zhumaev U, Li J F, Fu Y C, Füeg M, Esteve-Nuñez A, Wandlowski T. Electrochim. Acta, 2013, 112:933.
[35] Millo D, Harnisch F, Patil S A, Ly H K, Schröder U, Hildebrandt P. Angew. Chem. Int. Ed., 2011, 50(11):2625.
[36] Virdis B, Millo D, Donose B C, Batstone D J. PLoS ONE, 2014, 9(2):e89918.
[37] Reuillard B, Ly K H, Hildebrandt P, Jeuken L J C, Butt J N, Reisner E. J. Am. Chem. Soc., 2017, 139(9):3324.
[38] Tian X C, Zhao F, You L X, Wu X E, Zheng Z Y, Wu R R, Jiang Y X, Sun S G. Phys. Chem. Chem. Phys., 2017, 19(3):1746.
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[3] He Huichao, Sean P. Berglund, Buddie Mullins, Zhou Yong, Ke Gaili, Dong Faqin. Scanning Electrochemical Microscopy for Photoelectrochemical Energy Research [J]. Progress in Chemistry, 2016, 28(6): 908-916.
[4] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[5] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[6] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[7] Lu Lin, Li Xiaogang, Gao Jin. Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate [J]. Progress in Chemistry, 2011, 23(8): 1618-1626.