中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1859-1866 DOI: 10.7536/PC140740 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Electron Transfer Mediators in Microbial Electrochemical Systems

Liu Lidan1,2, Xiao Yong*2, Wu Yicheng2,3, Chen Bilian*1, Zhao Feng2   

  1. 1. College of Life Sciences, Fujian Normal University, Fuzhou 350108, China;
    2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    3. School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
  • Received: Revised: Online: Published:
PDF ( 2395 ) Cited
Export

EndNote

Ris

BibTeX

Extracellular electron transfer (EET) between electrochemically active microorganisms and electrodes plays a key role in microbial electrochemical systems (MESs) functioning of energy generation, bioremediation, etc. At present, researchers have a very limited understanding of the mechanism of EET, which is one of the major bottlenecks in application of MESs. Compared with direct electron transfer which requires a direct contact between microbial functional proteins and electrode, mediated electron transfer use electron transfer mediators (ETMs) which have reversible redox activities accompanies by high-efficiency EET for transporting electrons. ETMs serve as the middle electron acceptor, once reduced, can transfer electrons to terminal electron acceptor where upon it becomes re-oxidized. In principle, ETMs molecules could cycle thousands of times,thus, have a significant effect on the turnover of the terminal oxidant (e.g.iron) in certain circumstances.This review summarizes the recent advances of EET mechanisms with focus on mediated EET in MESs. Furthermore, we have highlighted the research trends of ETMs in MES,which will promote the practical applications of MESs in bioremediation, energy generation and so on.

Contents
1 Introduction
2 Roles of electron transfer mediators in extracellular electron transfer
3 Properties of electron transfer mediators
4 Classification of electron transfer mediators
5 Electron transfer mediators and their electron transfer mechanism
5.1 Exogenous electron transfer mediators
5.2 Endogenous electron transfer mediators
6 Outlook

CLC Number: 

[1] Bond D R, Holmes D E, Tender L M, Lovley D R. Science, 2002, 295: 483.
[2] Lovley D R. Nat. Rev. Microbiol., 2006, 4: 797.
[3] Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G. Biochem. Eng. J., 2010, 50: 10.
[4] Liu Z D, Li H R. Biochem. Eng. J., 2007, 36: 209.
[5] Lovley D R. Curr. Opin. Biotechnol., 2008, 19: 564.
[6] Hosseini M G, Ahadzadeh I. J. Power Sources, 2012, 220: 292.
[7] Brutinel E D, Gralnick J A. Appl. Microbiol. Biotechnol., 2012, 93: 41.
[8] 肖勇(Xiao Y), 吴松(Wu S), 杨朝晖(Yang Z H), 郑越(Zheng Y), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2013, 25: 1771.
[9] Deng L, Li F, Zhou S, Huang D, Ni J. Chin. Sci. Bull., 2010, 55: 99.
[10] Velasquez-Orta S B, Head I M, Curtis T P, Scott K, Lloyd J R, von Canstein H. Appl. Microbiol. Biotechnol., 2010, 85: 1373.
[11] Bond D R, Lovley D R. Appl. Environ. Microbiol., 2003, 69: 1548.
[12] Chaudhuri S K, Lovley D R. Nat. Biotechnol., 2003, 21: 1229.
[13] Reguera G, Mccarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435: 1098.
[14] Schroder U. Phys. Chem. Chem. Phys., 2007, 9: 2619.
[15] Kotloski N J, Gralnick J A. mBio, 2013, 4: e00553
[16] Lovley D R. Annu. Rev. Microbiol., 2012, 66: 391.
[17] Logan B E, Hamelers B, Rozendal R A, Schrorder U, Keller J, Freguia S, Aeiterman P, Verstraete W, Rabaey K. Environ. Sci. Technol., 2006, 40: 5181.
[18] Taskan E, Özkaya B, Hasar H. Int. J. Energ. Sci., 2014, 4: 9.
[19] Hao M, Liu X, Feng M, Zhang P, Wang G. J. Power Sources, 2014, 251: 222.
[20] Wang Y, Newman D K. Environ. Sci. Technol., 2008, 42: 2380.
[21] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 3968.
[22] Rabaey K, Boon N, Hofte M, Verstraete W. Environ. Sci. Technol., 2005, 39: 3401.
[23] Watanabe K, Manefield M, Lee M, Kouzuma A. Curr. Opin. Biotechnol., 2009, 20: 633.
[24] Martinez C M, Alvarez L H, Cervantes F J. Biodegradation, 2012, 23: 635.
[25] Bae S, Lee Y, Kwon M J, Lee W. J. Hazard. Mater., 2014, 274: 24.
[26] Yamazaki S, Kano K, Ikeda T, Isawa K, Kaneko T. BBA-Gen Subjects, 1999, 1428: 241.
[27] Kazarinov I A, Ignatova A A, Naumova M N. Russ. J. Electrochem., 2014, 50: 87.
[28] Van Der Zee F R, Cervantes F J. Biotechnol. Adv., 2009, 27: 256.
[29] Yang Y G, Xu M Y, Guo J, Sun G P. Process Biochem., 2012, 47: 1707.
[30] Stams A J M, de Bok F A M, Plugge C M, van Eekert M H A, Dolfing J, Schraa G. Environ. Microbiol., 2006, 8: 371.
[31] Zachara J M, Kukkadapu R K, Peretyazhko T, Bowden M, Wang C M, Kennedy D W, Moore D, Arey B. Geochim. Cosmochim. Acta, 2011, 75: 6330.
[32] Shi Z, Zachara J M, Shi L, Wang Z M, Moore D A, Kennedy D W, Fredrickson J K. Environ. Sci. Technol., 2012, 46: 11644.
[33] Aulenta F, Di Maio V, Ferri T, Majone M. Bioresour. Technol., 2010, 101: 9728.
[34] McKinlay J B, Zeikus J G. Appl. Environ. Microbiol., 2004, 70: 3467.
[35] Sun Y, Shao Y, Peng J, Liu L, Teng B. Sensor. Actuat. B-Chem., 2013, 188: 242.
[36] Park D H, Zeikus J G. Appl. Environ. Microbiol., 2000, 66: 1292.
[37] Chen H, Zhao J, Dai G. J. Hazard. Mater., 2011, 186: 1320.
[38] Sund C J, McMasters S, Crittenden S R, Harrell L E, Sumner J J. Appl. Microbiol. Biotechnol., 2007, 76: 561.
[39] Bhattacharyya A, Stavitski E, Dvorak J, Martínez C E. Geochim. Cosmochim. Acta, 2013, 122: 89.
[40] Kaden J, Galushko A S, Schink B. Arch. Microbiol., 2002, 178: 53.
[41] Ruan C M, Yang F, Lei C H, Deng J Q. Anal. Chem., 1998, 70: 1721.
[42] Wang Y, Kern S E, Newman D K. J. Bacteriol., 2010, 192: 365.
[43] Yamazki S, Kaneko T, Taketomo N, Kano K, Ikeda T. Appl. Microbiol. Biotechnol., 2002, 59: 72.
[44] Wang Y F, Masuda M, Tsujimura S, Kano K. Biotechnol. Bioeng., 2008, 101: 579.
[45] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 3968.
[46] Newman D K, Kolter R. Nature, 2000, 405: 94.
[47] Lovley D R, Coates J D, Bluntharris E L, Phillips E J P, Woodward J C. Nature, 1996, 382: 445.
[48] Coates J D, Cole K A, Chakraborty R, O'connor S M, Achenbach L A. Appl. Environ. Microbiol., 2002, 68: 2445.
[49] Hernandez-Montoya V, Alvarez L H, Montes-Moran M A, Cervantes F J. Geoderma, 2012, 183: 25.
[50] Wu C Y, Zhuang L, Zhou S G, Yuan Y, Yuan T, Li F B. Microb. Biotechnol., 2013, 6: 141.
[51] Klupfel L, Piepenbrock A, Kappler A, Sander M. Nat. Geosci., 2014, 7: 195.
[52] Cory R M, McKnight D M. Environ. Sci. Technol., 2005, 39: 8142.
[53] Mueller R M, North M A, Hati C Y S, Bhattacharyya S. J. Phys. Chem. B, 2011, 115: 3632.
[54] Zhang C, Katayama A. Environ. Sci. Technol., 2012, 46: 6575.
[55] Hong Y, Wu P, Li W, Gu J, Duan S. Appl. Microbiol. Biotechnol., 2012, 93: 2661.
[56] Liu G F, Zhou J T, Ji Q Y, Wang J, Jin R F, Lv H. World. J. Microb. Biot., 2013, 29: 1723.
[57] Shimizu T. J. Inorg. Biochem., 2012, 108: 171.
[58] Min B K, Cheng S A, Logan B E. Water Res., 2005, 39: 1675.
[59] Maithreepala R A, Doong R A. J. Hazard. Mater., 2009, 164: 337.
[60] Liu D, Dong H, Zhao L, Wang H. Geomicrobiol. J., 2013, 31: 53.
[61] Nevin K P, Lovley D R. Environ. Sci. Technol., 2000, 34: 2472.
[62] Zhang G, Burgos W D, Senko J M, Bishop M E, Dong H, Boyanov M I, Kemner K M. Chem. Geol., 2011, 283: 242.
[63] Hosseini M G, Ahadzadeh I. J. Taiwan. Inst. Chem. E, 2013, 44: 617.
[64] Wang K P, Liu Y W, Chen S L. J. Power Sources, 2011, 196: 164.
[65] Liu X W, Sun X F, Chen J J, Huang Y X, Xie J F, Li W W, Sheng G P, Zhang Y Y, Zhao F, Lu R, Yu H Q. Sci. Rep., 2013, 3: 1616.
[66] Rahimnejad M, Najafpour G D, Ghoreyshi A A, Talebnia F, Premier G C, Bakeri G, Kim J R, Oh S E. J. Microbiol., 2012, 50: 575.
[67] Liu R H, Sheng G P, Sun M, Zang G L, Li W W, Tong Z H, Dong F, Lam M H, Yu H Q. Appl. Microbiol. Biotechnol., 2011, 89: 201.
[68] Ahuja E G, Janning P, Mentel M, Graebsch A, Breinbauer R, Hiller W, Costisella B, Thomashow L S, Mavrodi D V, Blankenfeldt W. J. Am. Chem. Soc., 2008, 130: 17053.
[69] Das T, Manefield M. Commun. Integr. Biol., 2013, 6: e23570
[70] Venkataraman A, Rosenbaum M, Arends J B A, Halitschke R, Angenent L T. Electrochem. Commun., 2010, 12: 459.
[71] Abken H J, Tietze M, Brodersen J, Baumer S, Beifuss U, Deppenmeier U. J. Bacteriol., 1998, 180: 2027.
[72] Hernandez M E, Kappler A, Newman D K. Appl. Environ. Microbiol., 2004, 70: 921.
[73] Rabaey K, Boon N, Hofte M, Verstraete W. Environ. Sci. Technol., 2005, 39: 3401.
[74] Pham T H, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K. Appl. Microbiol. Biotechnol., 2008, 77: 1119.
[75] Yong Y C, Yu Y Y, Li C M, Zhong J J, Song H. Biosens. Bioelectron., 2011, 30: 87.
[76] Wang V B, Chua S L, Cao B, Seviour T, Nesatyy V J, Marsili E, Kjelleberg S, Givskov M, Tolker-Nielsen T, Song H, Say J, Loo C, Yang L. PLoS One, 2013, 8: e63129.
[77] Yong X Y, Shi D Y, Chen Y L, Feng J, Xu L, Zhou J, Wang S Y, Yong Y C, Sun Y M, Ouyang P K, Zheng T. Bioresour. Technol., 2014, 152: 220.
[78] Chen J J, Chen W, He H, Li D B, Li W W, Xiong L, Yu H Q. Environ. Sci. Technol., 2013, 47: 1033.
[79] North M A, Bhattacharyya S, Truhlar D G. J. Phys. Chem. B, 2010, 114: 14907.
[80] Tan S L J, Webster R D. J. Am. Chem. Soc., 2012, 134: 5954.
[81] Wu C, Cheng Y Y, Li B B, Li W W, Li D B, Yu H Q. Bioresour. Technol., 2013, 136: 711.
[82] Baron D, Labelle E, Coursolle D, Gralnick J A, Bond D R. J. Biol. Chem., 2009, 284: 28865.
[83] Von Canstein H, Ogawa J, Shimizu S, Lloyd J R. Appl. Environ. Microbiol., 2008, 74: 615.
[84] Bae S, Lee W. Geochim. Cosmochim. Acta, 2013, 114: 144.
[85] Fuller S J, McMillan D G G, Renz M B, Schmidt M, Burke I T, Stewart D I. Appl. Environ. Microbiol., 2014, 80: 128.
[86] Okamoto A, Hashimoto K, Nealson K H, Nakamura R. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 7856.
[87] Okamoto A, Saito K, Inoue K, Nealson K H, Hashimoto K, Nakamura R. Energ. Environ. Sci., 2014, 7: 1357.
[88] Le Laz S, Kpebe A, Lorquin J, Brugna M, Rousset M. Appl. Microbiol. Biotechnol., 2014, 98: 2699.
[89] Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H J, Mattes R. Appl. Environ. Microbiol., 1997, 63: 3684.
[90] Keck A, Rau J, Reemtsma T, Mattes R, Stolz A, Klein J. Appl. Environ. Microbiol., 2002, 68: 4341.
[91] Lu H, Zhou J, Wang J, Si W, Teng H, Liu G. Bioresour. Technol., 2010, 101: 7196.
[92] Deng L F, Li F B, Zhou S G, Huang D Y, Ni J R. Chin. Sci. Bull., 2010, 55: 99.
[93] Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009, 76: 14.
[94] Crippa P R, Michelini S. J. Photoch. Photobio. B, 1999, 50: 119.
[95] Plonka P M, Grabacka M. Acta Biochim. Pol., 2006, 53: 429.
[96] Turick C E, Caccavo F, Tisa L S. Can. J. Microbiol., 2008, 54: 334.
[97] Bothma J P, De Boor J, Divakar U, Schwenn P E, Meredith P. Adv. Mater., 2008, 20: 3539.
[98] Sajjan S S, Korean J. Microbiol. Biotechnol., 2013, 41: 60.
[99] Turick C E, Caccavo F, Tisa L S. FEMS Microbiol. Lett., 2003, 220: 99.
[100] Chatfield C H, Cianciotto N P. Infect. Immun., 2007, 75: 4062.
[101] Turick C E, Beliaev A S, Zakrajsek B A, Reardon C L, Lowy D A, Poppy T E, Maloney A, Ekechukwu A A. FEMS Microbiol. Ecol., 2009, 68: 223.
[102] Williams J, Trautwein-Schult A, Jankowska D, Kunze G, Squire M A, Baronian K. Appl. Microbiol. Biotechnol., 2014, 98: 2223.
[103] Cao X X, Huang X, Boon N, Liang P, Fan M Z. Electrochem. Commun., 2008, 10: 1392.
[104] Xiang K J, Qiao Y, Ching C B, Li C M. Electrochem. Commun., 2009, 11: 1593.
[105] Kim E, Gordonov T, Bentley W E, Payne G F. Anal. Chem., 2013, 85: 2102.
[106] Ding C M, Liu H, Zhu Y, Wan M X, Jiang L. Energ. Environ. Sci., 2012, 5: 8517.
[107] Liu J, Qiao Y, Lu Z S, Song H, Li C M. Electrochem. Commun., 2012, 15: 50.
[108] Yong Y C, Yu Y Y, Yang Y, Liu J, Wang J Y, Song H. Biotechnol. Bioeng., 2013, 110: 408.ich M, Stolz A, Knackmuss H J, Mattes R. Appl. Environ. Microbiol., 1997, 63: 3684.
[90] Keck A, Rau J, Reemtsma T, Mattes R, Stolz A, Klein J. Appl. Environ. Microbiol., 2002, 68: 4341.
[91] Lu H, Zhou J, Wang J, Si W, Teng H, Liu G. Bioresour. Technol., 2010, 101: 7196.
[92] Deng L F, Li F B, Zhou S G, Huang D Y, Ni J R. Chin. Sci. Bull., 2010, 55: 99.
[93] Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009, 76: 14.
[94] Crippa P R, Michelini S. J. Photoch. Photobio. B., 1999, 50: 119.
[95] Plonka P M, Grabacka M. Acta Biochim. Pol., 2006, 53: 429.
[96] Turick C E, Caccavo F, Tisa L S. Can. J. Microbiol., 2008, 54: 334.
[97] Bothma J P, De Boor J, Divakar U, Schwenn P E, Meredith P. Adv. Mater., 2008, 20: 3539.
[98] Sajjan S S. Korean. J. Microbiol. Biotechnol., 2013, 41: 60.
[99] Turick C E, Caccavo F, Tisa L S. FEMS Microbiol. Lett., 2003, 220: 99.
[100] Chatfield C H, Cianciotto N P. Infect. Immun, 2007, 75: 4062.
[101] Turick C E, Beliaev A S, Zakrajsek B A, Reardon C L, Lowy D A, Poppy T E, Maloney A, Ekechukwu A A. FEMS Microbiol. Ecol., 2009, 68: 223.
[102] Williams J, Trautwein-Schult A, Jankowska D, Kunze G, Squire M A, Baronian K. Appl. Microbiol. Biotechnol., 2014, 98: 2223.
[103] Cao X X, Huang X, Boon N, Liang P, Fan M Z. Electrochem. Commun., 2008, 10: 1392.
[104] Xiang K J, Qiao Y, Ching C B, Li C M. Electrochem. Commun., 2009, 11: 1593.
[105] Kim E, Gordonov T, Bentley W E, Payne G F. Anal. Chem., 2013, 85: 2102.
[106] Ding C M, Liu H, Zhu Y, Wan M X, Jiang L. Energ. Environ. Sci., 2012, 5: 8517.
[107] Liu J, Qiao Y, Lu Z S, Song H, Li C M. Electrochem. Commun., 2012, 15: 50.
[108] Yong Y C, Yu Y Y, Yang Y, Liu J, Wang J Y, Song H. Biotechnol. Bioeng., 2013, 110: 408.

 

[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[3] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[4] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[5] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.