中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1833-1840 DOI: 10.7536/PC150533 Previous Articles   Next Articles

• Review and comments •

Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer

Ma Jinlian1,2,3, Ma Chen4, Tang Jia3, Zhou Shungui3, Zhuang Li3*   

  1. 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China;
    4. Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 41301256,31470561) and the National Science Foundation of Guangdong Province,China(No. S20120011151,S2013040015231).
PDF ( 4994 ) Cited
Export

EndNote

Ris

BibTeX

Under anaerobic conditions, many microorganisms are capable of extracellular respiration involving electron transfer to or from extracellular substrates such as iron (hydr)oxides and humic substances. Electron shuttling is one of the significant strategies for extracellular electron transfer, however, the involved mechanism has not been thoroughly understood. Electron shuttles can be divided into endogenous electron shuttles that are self-produced by microbes themselves and exogenous electron shuttles that are natural substances or artificially synthesized materials. Electron shuttle-mediated extracellular electron transfer generally involves the following reactions: the oxidized form of electron shuttles (ESox) accept electrons from the oxidization of organic matter and become as the reduced form of electron shuttles (ESred), then ESred transfer electrons to extracellular electron acceptors and return to ESox. Through these steps, electron shuttles can be reversibly oxidized and reduced. This review mainly focuses on the electron transfer mechanisms of different electron shuttles, and the factors affecting extracellular electron transfer such as the molecule diffusion, redox potential and electron transfer capacity of electron shuttles. Electron shuttle-mediated extracellular electron transfer has significant influence on contaminants degradation and microbial electrogenesis, thus the better understanding of their mechanisms is very important to their implications in bioremediation and bioenergy.

Contents
1 Introduction
2 Electron transfer mechanisms of different electron shuttles
2.1 Endogenous electron shuttles
2.2 Exogenous electron shuttles
3 Factors affecting extracellular electron transfer
3.1 Molecule diffusion
3.2 Redox potential
3.3 Electron transfer capacity
4 Environmental implications
4.1 The applications of electron shuttles in pollutant biodegradation
4.2 The applications of electron shuttles in bioelectrochemical systems
5 Conclusion and outlook

CLC Number: 

[1] Lovley D R. Geobiology, 2008, 6: 225.
[2] Gralnick J A, Newman D K. Mol. Microbiol., 2007, 65: 1.
[3] von Canstein H, Ogawa J, Shimizu S, Lloyd J R. Appl. Environ. Microbiol., 2008, 74: 615.
[4] Brutinel E D, Gralnick J A. Appl. Microbiol. Biotechnol., 2012, 93: 41.
[5] Turick C E, Tisa L S, Caccavo F. Appl. Environ. Microbiol., 2002, 68: 2436.
[6] Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R. Science, 2010, 330: 1413.
[7] Kato S, Hashimoto K, Watanab K. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 10042.
[8] Kappler A, Wuestner M L, Ruecker A, Harter J, Halama M, Behrens S. Environ. Sci. Technol. Lett., 2014, 1: 339.
[9] Chen S S, Rotaru A E, Shrestha P M, Malvankar N S, Liu F H, Fan W, Nevin K P, Lovley D R. Sci. Rep., 2014, 4: 1.
[10] Liu F H, Rotaru A E, Shrestha P M, Malvankar N S, Nevin K P, Lovley D R. Energ. Environ. Sci., 2012, 5: 8982.
[11] Kato S, Hashimoto K, Watanabe K. Environ. Microbiol.,2011, 14: 1646.
[12] Lovley D R, Holmes D E, Nevin K P. Adv. Microb. Physiol., 2004, 49: 219.
[13] Nevin K P, Lovley D R. Appl. Environ. Microbiol., 2002, 68: 2294.
[14] Watanabe K, Manefield M, Lee M, Kouzuma A. Curr. Opin. Biotech., 2009, 20: 633.
[15] Van der Zee F P, Cervantes F J. Biotechnol. Adv., 2009, 27: 256.
[16] Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C. Nature, 1996, 382: 445.
[17] Hernandez M E, Kappler A, Newman D K. Appl. Environ. Microbiol., 2004, 70: 921.
[18] 邓丽芳(Deng L F), 李芳柏(Li F B), 周顺桂(Zhou S G), 黄德银(Huang D Y), 倪晋仁(Ni J L). 科学通报(Chinese Science Bulletin), 2009, 54(19):2983.
[19] Wang Y, Newman D K. Environ. Sci. Technol.,2008, 42: 2380.
[20] Wu Y D, Liu T X, Li X M, Li F B. Environ. Sci. Technol., 2014, 48: 9306.
[21] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 3968.
[22] Kudlich M, Keck A, Klein J, Stolz A. Appl. Environ. Microbiol., 1997, 63: 3691.
[23] Kotloski N J, Gralnick J A. MBio., 2013, 4: e00553.
[24] Wolf M, Kappler A, Jiang J, Meckenstock R U. Environ. Sci. Technol., 2009, 43: 5679.
[25] Workman D, Woods S L, Gorby Y, Fredrickson J K, Truex M J. Environ. Sci. Technol., 1997, 31: 2292.
[26] Kaden J, Galushko A S, Schink B. Arch Microbiol., 2000, 178: 53.
[27] Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik-Brown R, Rittmann B E. FEMS Microbiol. Rev., 2010, 34: 3.
[28] Li X M, Liu L, Liu T X, Yuan T, Zhang W, Li F B, Zhou S G, Li Y T. Chemosphere, 2013, 92: 218.
[29] Smith J A, Nevin K P, Lovley D R. Front. Microbiol., 2015, 6: 1.
[30] Li X M, Liu T X, Liu L, Li F B. RSC Adv., 2014, 4: 2284.
[31] Jiang J, Kappler A. Environ. Sci. Technol., 2008,42: 3563.
[32] Hong Y G, Guo J, Xu Z C, Xu M Y, Sun G P. J. Microbiol. Biotechnol., 2007, 17: 428.
[33] O'Loughlin E J. Environ. Sci. Technol., 2008, 42: 6876.
[34] 洪义国(Hong Y G),许玫英(Xu M Y),郭俊(Guo J),岑英华(Cen Y H),孙国萍(Sun G P). 应用与环境生物学报(Chinese Journal of Applied and Environmental Biology), 2005, 11(5):642.
[35] Pearce C I, Christie R, Boothman C, von Canstein H, Guthrie J T, Lloyd J R. Biotechnol. Bioeng., 2006, 95: 692.
[36] Pearce C I, Guthrie J T, Lloyd J R. Dyes Pigments, 2008, 76: 696.
[37] Cervantes F J, Enriquez J E, Mendoza Hernandez M R, Razo Flores E, Field J A. Water Sci. Technol., 2006, 54: 171.
[38] Chung K T, Fulk G E, Egan M. Appl. Environ. Microbiol., 1978, 35: 558.
[39] Hashsham S A, Freedman D. Appl. Environ. Microbiol., 1999, 65: 4537.
[40] Zhang C F, Katayama A. Environ. Sci. Technol., 2012, 46: 6575.
[41] Claudia G B, Field J A. Biotechnol. Bioeng., 2005, 89: 539.
[42] Cervantes F J, Vu-Thi-Thu L, Lettinga G, Field J A. Appl. Microbiol. Biotechnol., 2004, 64: 702.
[43] Yang Y G, Xu M Y, Guo J, Sun G P. Process Biochem., 2012, 47: 1707.
[44] 卢娜(Lu N),周顺桂(Zhou S G),倪晋仁(Ni J R). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1233.
[45] Choi Y, Kim N, Kim S, Jung S. B. Kor. Chem. Soc., 2003, 24: 437.
[46] Park D H, Zeikus J G. Appl. Environ. Microbiol., 2000, 66: 1292.
[47] Park D H, Zeikus J G. Appl. Microbiol. Biotechnol., 2002,59: 58.
[48] Zhang D D, Zhang C F, Li Z L, Suzuki D, Komatsu D D, Tsunogai U, Katayama A. Bioresour. Technol., 2014, 164: 232.
[49] Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S. Environ. Sci. Technol., 2008, 42: 6185.
[50] Thrash J C, Van Trump J I, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41: 1740.
[51] Liu R H, Sheng G P, Sun M, Zang G L, Li W W, Tong Z H, Dong F, Lam M H W, Yu H Q. Appl. Microbiol. Biotechnol., 2011, 89: 201.
[52] Liu Y, Kim H, Franklin R R, Bond D R. ChemPhysChem., 2011, 12: 2235.
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[3] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[4] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[5] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[6] Xu Jielong, Zhou Shungui, Yuan Yong, Wang Yueqiang, Zhuang Li. Live Wire: A Review on Electron Transfer Mechanism and Applications of Microbial Nanowires [J]. Progress in Chemistry, 2012, (9): 1794-1800.
[7] Kuang Tingyun1,2*,Bai Kezhi1,Yang Xiushan2. Suggestions on the Development Strategy of Bioenergy in China [J]. Progress in Chemistry, 2007, 19(0708): 1060-1063.