中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1202-1221 DOI: 10.7536/PC180128 Previous Articles   Next Articles

• Review •

Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials

Qinshan Cai1,2, Shirong Wang1,2, Yin Xiao1,2, Xianggao Li1,2*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China;
    2. Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key R&D Program of China(No. 2016YFB0401303) and the Natural Science Foundation of Tianjin (No. 16JCZDJC37100).
PDF ( 1327 ) Cited
Export

EndNote

Ris

BibTeX

Comparing with vacuum evaporation, fabricating organic light-emitting diodes (OLEDs) by solution-processing methods has plenty of merits, such as high material utilization, simple equipment and feasibility of low cost large size panels, which has drawn much attention. Small molecule hole-transporting materials (HTMs) are an important part of OLED devices for hole transporting and electron blocking. Cross-linking groups such as styryl, oxetane, etc. are added to the structure to form cross-linkable small molecular hole transporting materials, which are suitable for solution-processed technology. Initiating with the thermal or the ultra-violet irradiation cross-linking curing reaction, the polymer network structure is formed. As applied in the multilayer OLEDs, the inducing of cross-linkable hole-transporting materials can solve the miscibility problem of the interlayers between the emitting material layer(EML) and the hole transporting layer(HTL), then improve the efficiency and stability of the device consequently. In this paper, according to the requirements of the solution process for the materials, many techniques about spin-coating and ink-jet printing are presented, such as the methods of fabrication, the quality of films affected by manual factors and the comparison of different manufactory measures. Afterwards, to summarize their performance in devices, various cross-linkable HTMs are listed and investigated, such as trifluoroethylene group, styrene group, oxetane group, siloxane group and unsaturated ester group. Finally, the developing trend of cross-linkable HTMs and solution process is introduced.
Contents
1 Introduction
2 Solution-processed multi-layer organic light-emitting diodes
2.1 Spin-coating process
2.2 Ink-jet printing process
3 Cross-linkable hole-transporting materials
3.1 Trifluoroethylene group
3.2 Styrene group
3.3 Oxetane group
3.4 Siloxane group
3.5 Unsaturated ester group
3.6 Other cross-linking methods
4 Conclusion and outlook

CLC Number: 

[1] Forrest S R. Nature, 2004, 428(6986):911.
[2] Mccarthy M A, Liu B, Donoghue E P, Kravchenko I, Kim D Y, So F, Rinzler A G. Science, 2011, 332(6029):570.
[3] Liu X C, You J, Xiao Y, Wang S R, Gao W Z, Peng J B, Li X G. Dyes and Pigments, 2016, 125:36.
[4] Park J W, Shin D C, Park S H. Semicond. Sci. Technol., 2011, 26(3):034002.
[5] Sheats J R, Antoniadis H, Hueschen M, Leonard W, Miller J, Moon R, Roitman D, Stocking A. Science, 2014, 273(5277):884.
[6] Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51(12):913.
[7] 邵剑(Shao J). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2013.
[8] Wang P P, Fan S G, Liang J F, Ying L, You J, Wang S R, Li X G. Dyes and Pigments, 2017, 142:175.
[9] 尹勇明(Yin Y M). 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2015.
[10] Ma H, Yip H L, Huang F, Jen A K Y. Adv. Funct. Mater., 2010, 20(9):1371.
[11] Ho S, Liu S Y, Chen Y, So F. J. Photon. Energy, 2015, 5(1):057611.
[12] Hu Z C, Zhang K, Huang F, Cao Y. Chem. Commun., 2015, 51(26):5572.
[13] Huang F, Wu H B, Cao Y. J. Chem. Soc. Rev., 2010, 39(7):2500.
[14] Elschner A, Heuer H W, Jonas F, Kirchmeyer S, Wehrmann R, Wussow K. Adv. Mater., 2001, 13(23):1811.
[15] Steuerman D W, Garcia A, Dante M, Yang R, Löfvander J P, Nguyen T Q. Adv. Mater., 2008, 20(3):528.
[16] Deng J, Xie G Z, Yu J S, Suo F, Li W Z, Jiang Y D. Proc. SPIE, 2007, 6722.
[17] Yang Z F, Xu B, He J T, Xue L L, Guo Q, Xia H J, Tian W J. Org. Electron., 2009, 10(5):954.
[18] Min J C, Sim K M, Bae S R, Choi H O, Kim S Y, Chung D S, Park K. Dyes and Pigments, 2017, 149:415.
[19] Aizawa N, Pu Y J, Sasabe H, Kido J. Org. Electron., 2013, 14(6):1614.
[20] Gong X, Wang S, Moses D, Bazan G C, Heeger A J. Adv. Mater., 2005, 17(17):2053.
[21] Shao J, Tan W Y, Li Q D, Song X, Li Y H, Liu G, Mo Y Q, Zhu X H, Peng J, Cao Y. Org. Electron., 2013, 14(8):2051.
[22] Hempe M, Schnellbächer L, Wiesner T, Reggelin M. Synthesis, 2017, 49(19):4489.
[23] He K D, Liu Y, Gong J Y, Zeng P, Kong X, Yang X L, Yang C, Yu Y, Liang R Q, Ou Q R. Appl. Surf. Sci., 2016, 382:288.
[24] 汤多峰(Tang D F),朱平(Zhu P),杨果(Yang G). 广东科技(Guangdong Science & Technology), 2009, (22):35.
[25] Hall D B, Underhill P, Torkelson J M. Polym. Eng. Sci., 1998, 38(12):2039.
[26] Zuniga C A, Barlow S, Marder S R. Chem. Mater., 2013, 23(3):658.
[27] Usha R, Götz T. Acta Mech., 2001, 147(1/4):137.
[28] Amoli H S, Amani H, Mozaffari M. J. Russ. Laser Res., 2013, 34(6):581.
[29] 刘西成(Liu X C). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2016.
[30] 冯姝(Feng S). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2012.
[31] 衷存鹏(Zhong C P). 重庆大学博士论文(Doctoral Dissertation of Chongqing University), 2015.
[32] 杨雷(Yang L),程涛(Cheng T),曾文进(Zeng W J),赖文勇(Lai W Y),黄维(Huang W). 化学进展(Progress in Chemistry), 2015, 27(11):1615.
[33] Wilson P, Lei C, Lekakou C, Watts J F. Org. Electron., 2014, 15(9):2043.
[34] Bolink H J, Coronado E, Orozco J, Sessolo M. Adv. Mater., 2009, 21(1):79.
[35] 刘会敏(Liu H M),郑华(Zheng H),许伟(Xu W),彭俊彪(Peng J B). 中国材料进展(Materials China), 2014, 33(3):163.
[36] 杨辉(Yang H),王维洁(Wang W J),季静佳(Ji J J),丁玉强(Ding Y Q),李果华(Li G H). 人工晶体学报(Jouranal of Synthetic Crystals), 2007, 36(1):226.
[37] Lim B, Hwang J T, Kim J Y, Ghim J, Vak D, Noh Y Y, Lee S H, Lee K, Heeger A J, Kim D Y. Org. Lett., 2006, 8(21):4703.
[38] Ji J M, Narayansarathy S, Neilson R H, Oxley J D, Babb D A, Rondan N G, Smith D W. Organometallics, 1998, 17(5):783.
[39] Smith D W, Babb D A. Macromolecules, 1996, 29(3):852.
[40] Smith D W, Babb D A, Shah H V, Hoeglund A, Traiphol R, Perahia D, Boone H W, Langhoff C, Radler M. J. Fluorine Chem., 2000, 104(1):109.
[41] Liu S, Jiang X, Ma H, Liu M S, Jen K Y. Macromolecules, 2000, 33(10):3514.
[42] Jiang X Z, Liu S, Liu M S, Herguth P, Jen K Y, Fong H, Sarikaya M. Adv. Funct. Mater., 2002, 12(11/12):745.
[43] Niu Y H, Liu M S, Ka J W, Jen K Y. Appl. Phys. Lett., 2006, 88(9):913.
[44] Elschner A, Bruder F, Heuer H W, Jonas F. Synthetic Met., 2000, 111(99):139.
[45] Brown T M, Kim J S, Friend R H, Cacialli F, Daik R, Feast W J. Appl. Phys. Lett., 1999, 75(12):1679.
[46] Kelli S, Khuong, Jones W H, Pryor A W A, Houk K N. J. Am. Chem. Soc., 2005, 127(4):1265.
[47] Mayo F R. J. Am. Chem. Soc., 1968, 90(5):1289.
[48] Chong Y K, Rizzardo E, Solomon D H. Chemischer Informationsdienst, 1984, 15(14):299.
[49] Cheng Y J, Liu M S, Zhang Y, Niu Y, Huang F, Ka J W, Yip H L, Tian Y, Jen A K Y. Chem. Mater., 2007, 20(2):413.
[50] Hong H, Mi Y J, Ye E H, Kim J H. Macromol. Res., 2013, 21(3):321.
[51] Niu Y H, Liu M S, Ka J W, Bardeker J, Zin M T, Schofield R, Chi Y, Jen K Y. Adv. Mater., 2010, 19(2):300.
[52] Lin C Y, Lin Y C, Hung W Y, Wong K T, Kwong R C, Xia S C, Chen Y H, Wu C I. J. Mater. Chem., 2009, 19(22):3618.
[53] Shirota Y, Kageya H. Chem. Rev., 2007, 107:953.
[54] Wong K T, Wang Z J, Chien Y Y, Wang C L. Org. Lett., 2001, 3(15):2285.
[55] 叶沐阳(Ye M Y). 东南大学博士论文(Doctoral Dissertation of Southeast University), 2016.
[56] Jiang W, Ban X X, Ye M Y, Sun Y M, Duan L, Qiu Y. J. Mater. Chem. C, 2014, 3(2):243.
[57] Ameen S, Lee J, Han H, Min C S, Lee C. RSC. Adv., 2016, 6(39):33212.
[58] Paul G K, Mwaura J, Argun A A, Prasad Taranekar A, Reynolds J R. Macromolecules, 2006, 39(23):7789.
[59] Zacharias P, Gather M C, Rojahn M, Nuyken O, Meerholz K. Angew. Chem. Int. Ed. Engl., 2007, 46(23):4388.
[60] Gather M C, Jin R, Mello J D, Bradley D D C, Meerholz K. Appl. Phys. B, 2009, 95(1):113.
[61] 袁翔东(Yuan X D). 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2006.
[62] Gather M C, Köhnen A, Falcou A, Becker H, Meerholz K. Adv. Funct. Mater., 2007, 17(2):191.
[63] Köhnen A, Riegel N, Kremer J H W M, Lademann H, Müller D C, Meerholz K. Adv. Mater., 2010, 21(8):879.
[64] Köhnen A, Riegel N, Müller D C, Klaus M. Adv. Mater., 2011, 23(37):4301.
[65] Bayerl M S, Braig T, Nuyken O, Müller D C, Groß M, Meerholz K. Macromol. Rapid Comm., 1999, 20(4):224.
[66] Bacher E, Jungermann S, Rojahn M, Wiederhirn V, Nuyken O. Macromol. Rapid Comm., 2004, 25(12):1191.
[67] Yang X, Müller D. C, Neher D, Meerholz K. Adv. Mater., 2010, 18(7):948.
[68] Braig T, Müller D C, Groß M, Meerholz K, Nuyken O. Macromol. Rapid Comm., 2015, 21(9):583.
[69] Müller D C, Braig T, Nothofer H G, Arnoldi M, Gross M, Scherf U, Nuyken O, Meerholz K. Chem. Phys. Chem., 2000, 1(4):207.
[70] Liaptsis G, Meerholz K. Adv. Funct. Mater., 2013, 23(3):359.
[71] Borsenberger P M, Magin E H, Fitzgerald J J. J. Chem. Phys., 1991, 94(12):8276.
[72] Goushi K, Kwong R, Brown J J, Sasabe H, Adachi C. J. Appl. Phys., 2004, 95(12):7798.
[73] Liaptsis G, Hertel D, Meerholz K. Angew. Chem., 2013, 125(36):9563.
[74] Shieh Y T, Hsiao K I. J. Appl. Polym. Sci., 2015, 70(6):1075.
[75] Li W J, Wang Q W, Cui J, Chou H, Shaheen S E, Jabbour G E, Anderson J, Lee P, Kippelen B, Peyghambarian N, Armstrong N R, Marks T J. Adv. Mater., 1999, 11(9):730.
[76] Yan H, Lee P, Armstrong N R, Graham A, Evmenenko G A, Dutta P, Marks T J. J. Am. Chem. Soc., 2005, 127(9):3172.
[77] Lee S, Lyu Y Y, Lee S H. Synthetic Met., 2006, 156(16/17):1004.
[78] Huang Q, Evmenenko G A, Dutta P, Lee P, Armstrong N R, Marks T J. J. Am. Chem. Soc., 2005, 127(9):10227.
[79] Bacher A, Bleyl I, Erdelen C H, Haarer D, Paulus W, Schmidt H W. Adv. Mater., 1997, 9(13):1031.
[80] Bacher A, Erdelen C H, Paulus W, Ringsdorf H, Schmidt H W, Schuhmacher P. Macromolecules, 1999, 32(14):4551.
[81] Derue L, Olivier S, Tondelier D, Maindron T, Geffroy B, Ishow E. ACS Appl. Mater. Inter., 2016, 8(25):16207.
[82] Rennert J, Ruggiero E M, Rapp J. Photochem. Photobiol., 2010, 6(1):29.
[83] Ladell J, Mcdonald T R R, Schmidt G M J. Acta Crystallographica, 2001, 9(2):195.
[84] Domercq B, Hreha R, Zhang Y D, Larribeau N, Haddock J N, Schultz C, Marder S, Kippelen B. Chem. Mater., 2003, 15(7):1491.
[85] Li X C, Yong T M, Grüner J, Holmes A B, Moratti S C, Cacialli F, Friend R H. Synthetic Met., 1997, 84(1):437.
[86] Schelkle K M, Bender M, Beck S, Jeltsch K F, Stolz S, Zimmermann J, Weitz R T, Pucci A, Müllen K, Hamburger M. Macromolecules, 2016, 49(5):1518.
[87] Bender M, Schelkle K M, Jürgensen N, Schmid S, Hernandezsosa G, Bunz U H F. Macromolecules, 2016, (8):2957.
[88] 贾建超(Jia J C),蔡万清(Cai W Q),刘升建(Liu S J),黄飞(Huang F),曹镛(Cao Y). 高分子学报(Acta Polymerica Sinica), 2017, (7):1169.
[89] Yagci Y, Kiskan B, Ghosh N N. J. Polym. Sci. Pol. Chem.,2009, 47:5565.
[90] Burke W J. J. Am. Chem. Soc., 1949, 71:609.
[91] Schreiber H. GP 2255504, 1973.
[92] Aversa M C, Giannetto P, Caristi C, Ferlazzo A. Chemischer Informationsdienst, 1982, 469.
[93] Wang C F, Su Y C, Kuo S W, Huang C F, Sheen Y C, Chang F C. Angew. Chem., 2006, 118(14):2306.
[94] Vengatesan M R, Devaraju S, Dinakaran K, Alagar M. J. Mater. Chem., 2012, 22(15):7559.
[95] Shih H K, Chu Y L, Chang F C, Zhu C Y, Kuo S W. Polym. Chem-UK., 2015, 6(34):6227.
[96] Li Y N, Ding J F, Michael D, Tao Y, Lu A J, D'Iorio M. Chem. Mater., 2003, 15(26):4936.
[97] Bozano L D, Carter K R, Lee V Y, Miller R D, Dipietro R, Scott J C. J. Appl. Phys., 2003, 94:3061.
[98] Du N Y, Tian R Y, Peng J B, Mei Q B, Lu M G. Macromol. Rapid Comm., 2006, 27(6):412.
[99] Ma B W, Kim B J, Poulsen D A, Pastine S J, Fréchet J M J. Adv. Funct. Mater., 2010, 19(7):1024.
[100] Li Z A, Zhu Z L, Chueh C C, Luo J D, Jen A K Y. Adv. Energy Mater., 2016, 6(21):01165.
[101] Xu J X, Voznyy O, Comin R, Gong X, Walters G, Liu M, Kanjanaboos P, Lan X Z, Sargent E H. Adv. Mater., 2016, 28(14):2807.
[102] Niu Y H, Munro A M, Cheng Y J, Tian Y Q, Liu M S, Zhao J L, Bardecker J A, Jen-La Plante I, Ginger D S, Jen K Y. Adv. Mater., 2007, 19(20):3371.
[103] Zhao J L, Bardecker J A, Munro A M, Liu M S, Niu Y H, Ding I K, Luo J D, Chen B Q, Jen A K, Ginger D S. Nano Lett., 2006, 6(3):463.
[104] Feser S, Meerholz K. Chem. Mater., 2013, 23(22):5001.
[1] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[2] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[3] Zhiwen Yang, Yingying Zhan, Shaomin Ji, Qingdan Yang, Qi Li, Yanping Huo. Boron-Containing Organic Light-Emitting Diodes: Materials and Devices [J]. Progress in Chemistry, 2019, 31(6): 906-928.
[4] Jiang He, Jin Jibiao, Chen Runfeng, Zheng Chao, Huang Wei. Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures [J]. Progress in Chemistry, 2016, 28(12): 1811-1823.
[5] Yang Lei, Cheng Tao, Zeng Wenjin, Lai Wenyong, Huang Wei. Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices [J]. Progress in Chemistry, 2015, 27(11): 1615-1627.
[6] Su Bin, Zhao Jing, Liu Chunbo, Che Guangbo, Wang Qingwei, Xu Zhanlin. Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives [J]. Progress in Chemistry, 2013, 25(07): 1090-1101.
[7] Ma Zhijun, Lei Ting, Pei Jian*, Liu Chenjiang*. Blue Host Materials for Phosphorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2013, 25(06): 961-974.
[8] Liao Zhangjin, Zhu Tongjun, Mi Baoxiu, Gao Zhiqiang, Fan Quli, Huang Wei. Molecular Iridium(Ⅲ) Complexes and Their Corresponding Electrophosphorescent Devices [J]. Progress in Chemistry, 2011, 23(8): 1627-1643.
[9] Yang Zhenglong, Zhou Dan, Chen Qiuyun. Preparation and Potential Application of Polymeric Micelles via RAFT Polymerization [J]. Progress in Chemistry, 2011, 23(11): 2360-2367.
[10] Wang Mengfan Qi Wei Su Rongxin He Zhimin. Advances in Cross-Linked Enzyme Aggregates [J]. Progress in Chemistry, 2010, 22(01): 173-178.
[11] Chen Yuwei Wang Jianlong. The Radiation-Induced Synthesis of Hydrogels and Their Application for Removal of Heavy Metal Ions from Aqueous Solution [J]. Progress in Chemistry, 2009, 21(10): 2250-2256.
[12] Weng Xiaocheng, Weng Liwei, Bai Minghui, Zhou Yangyang, Zhou Xiang**. Studies of Inducible DNA Cross-Linking Agents [J]. Progress in Chemistry, 2007, 19(012): 1999-2005.
[13] Yunhua Xu,Junbiao Peng,Yong Cao**. Progress of White Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2006, 18(04): 389-398.
[14] Ma Chanqi,Wang Xuesong**,Zhang Baowen**,Cao Yi. Progress in Red Emitters for Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2004, 16(03): 463-.
[15] Ma Changqi,Wang Xuesong**,Zhang Baowen**,Cao Yi. Progress in Hole-Transport Materials for Use in Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2003, 15(06): 495-.