中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1352-1367 DOI: 10.7536/PC200102 Previous Articles   Next Articles

• Review •

Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes

Chao Zheng1, Yizhong Dai1, Lingfeng Chen1, Mingguang Li1,**(), Runfeng Chen1,**(), Wei Huang1   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
  • Received: Revised: Online: Published:
  • Contact: Mingguang Li, Runfeng Chen
  • Supported by:
    the National Natural Science Foundation of China(21772095, 91833306, 61875090, 21674049); the Major Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA180005)
Richhtml ( 18 ) PDF ( 881 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the development of high-performance fluorescent organic light-emitting devices(FOLEDs) has attracted extensive attention in both academic and industry research areas. Since only 25% electronically excited excitons can be used for electroluminescence, the external quantum efficiencies(EQEs) of conventional FOLEDs are generally less than 5%. In order to increase the exciton utilizing efficiency for enhanced performance of FOLEDs, the architecture of sensitized FOLEDs(SFOLEDs) are designed to harvest both singlet and triplet excitons by means of efficient energy transfer processes from the host or sensitizer to the fluorescent dopant. Great progress has been made in the efficiency enhancement of FOLEDs and the maximum EQE values of the reported SFOLEDs have reached 26.1% to date. This review intents to introduce the sensitization principles and working mechanisms of various SFOLEDs in detail. Also, the latest research progress on the device structures and performance are summarized and discussed for various SFOLEDs based on thermally activated delayed fluorescent(TADF) sensitization, exciplex sensitization, triplet exciton annihilation sensitization, and hybridized local and charge-transfer(HLCT) sensitization, etc. Finally, the future research directions of SFOLEDs are discussed to give an outlook of the prospect trends and future challenges. We hope that this review attracts more researchers with different disciplinary areas to devote themselves to this interesting research field.

Contents

1 Introduction

2 The basic principle of sensitized FOLEDs

3 TADF-sensitized FOLEDs

3.1 Single TADF-sensitized FOLEDs

3.2 Multiple hosts TADF-sensitized FOLEDs

4 Exciplex sensitized FOLEDs

4.1 Pure exciplex sensitized FOLEDs

4.2 Phosphorescence assisted exciplex sensitized FOLEDs

4.3 TADF assisted exciplex sensitized FOLEDs

5 Other materials sensitized FOLEDs

6 Conclusion and outlook

Fig.1 Mechanism of SFOLEDs
Fig.2 (a) Device principle of single TASFOLEDs. (b) The absorption spectrum of fluorescent material and the emission spectra of host materials measured in dichloromethane. (c) External quantum efficiency(EQE) versus current density characteristics. (d) Electroluminescence(EL) spectra of the single TASFOLEDs[9]
Fig.3 (a) Device principle of multiple hosts TASFOLEDs,(b~e) EQE-luminance curves[10]
Scheme 1 Molecular structures of (a) TADF and (b) fluorescent materials
Table 1 Summary of device performances of the TASFOLEDs
Fig.4 (a)The principle of exciplex SFOLEDs.(b) Diagram of device structure.(c) EQE and power efficiency versus luminance characteristics.(d) Electroluminescence spectra at different doping concentrations[11]
Fig.5 (a) Schematic diagram of exciplex SFOLEDs, in which exciplex was separated in space,(b) Transient EL decay profiles of the OLEDs based on DBP with different mCP interlayer thickness,(c) EL spectra of the devices with 0~10 nm thin mCP interlayers,(d) EQE versus current density characteristics[60]
Fig.6 (a) The principle of phosphorescence assisted exciplex SFOLEDs,(b) Diagram of device structure,(c) Electroluminescence(EL) spectra,(d) EQE versus current density characteristics[52]
Fig.7 (a) Schematic diagram of multiple hosts TASFOLEDs, in which exciplex was used as the main host,(b) Schematic illustration of energy transfer mechanism,(c) The EQE-dopant concentration relationships of different materials,(d) Molecular structure of fluorescent materials[13]
Scheme 2 Molecular structures of (a) donor materials and(b) acceptor materials used in exciplex,(c) molecular structures of phosphorescent materials
Fig.8 (a) Principle of TTA material SFOLEDs,(b) principle of HLCT material SFOLEDs
Scheme 3 Molecular structures of hosts and guests used in other materials sensitized FOLEDs
Table 2 Summary of device performances of exciplex and the other materials SFOLEDs
[1]
Tang C W , Vanslyke S A. Appl. Phys. Lett., 1987, 51: 913.
[2]
Burroughes J H , Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burn P L, Holmes A B. Nature, 1990, 347: 539.
[3]
Shin H , Lee S , Kim K H , Moon C K , Yoo S J , Lee J H , Kim J J. Adv. Mater., 2014, 26: 4730.
[4]
Kim M , Lee J Y. Adv. Funct. Mater., 2014, 24: 4164.
[5]
Kim K H , Ahn E S , Huh J S , Kim Y H , Kim J J. Chem. Mater., 2016, 28: 7505.
[6]
Udagawa K , Sasabe H , Cai C , Kido J. , Adv. Mater. 2014, 26: 5062.
[7]
Shin H , Lee J H , Moon C K , Huh J S , Sim B , Kim J J. Adv. Mater., 2016, 28: 4920.
[8]
Kim K H , Lee S , Moon C K , Kim S Y , Park Y S , Lee J H , Lee J W , Huh J , You Y , Kim J J. Nat. Commun., 2014, 5: 4769.
[9]
Zhang D , Duan L , Li C , Li Y , Li H , Zhang D , Qiu Y. Adv. Mater., 2014, 26: 5050.
[10]
Nakanotani H , Higuchi T , Furukawa T , Masui K , Morimoto K , Numata M , Tanaka H , Sagara Y , Yasuda T , Adachi C. Nat. Commun., 2014, 5: 4016.
[11]
Liu X K , Chen Z , Zheng C J , Chen M , Liu W , Zhang X H , Lee C S. Adv. Mater., 2015, 27: 2025.
[12]
Kim H G , Kim K H , Kim J J. Adv. Mater., 2017, 29: 1702159.
[13]
Zhang D , Song X , Cai M , Duan L. Adv. Mater., 2018, 30: 1705250.
[14]
Brown A R , Pichler K , Greenham N C , Bradley D D C, Friend R H, Holmes A B. Chem. Phys. Lett., 1993, 210: 61.
[15]
Rothberg L J , Lovinger A J. J. Mater. Res., 1996, 11: 3174.
[16]
Friend R H , Gymer R W , Holmes A B , Burroughes J H , Marks R N , Taliani C , Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Nature, 1999, 397: 121.
[17]
Garten F , Hilberer A , Cacialli F , Esselink E , Vandam Y , Schlatmann B , Friend R H , Klapwijk T M , Hadziioannou G. Adv. Mater., 1997, 9: 127.
[18]
Brown A R , Bradley D D C, Burroughes J H, Friend R H, Greenham N C, Burn P L, Holmes A B, Kraft A. Appl. Phys. Lett., 1992, 61: 2793.
[19]
Baldo M A , O'brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151.
[20]
Baldo M A , Thompson M E , Forrest S R. Nature, 2000, 403: 750.
[21]
Yang X , Zhou G , Wong W Y. Chem. Soc. Rev., 2015, 44: 8484.
[22]
Duan C , Fan C , Wei Y , Han F , Huang W , Xu H. Sci. Rep., 2016, 6: 19904.
[23]
Tao Y , Yuan K , Chen T , Xu P , Li H , Chen R , Zheng C , Zhang L , Huang W. , Adv. Mater. 2014, 26: 7931.
[24]
Kondakov D Y , Pawlik T D , Hatwar T K , Spindler J P. J. Appl. Phys., 2009, 106: 124510.
[25]
Luo Y , Aziz H. Adv. Funct. Mater., 2010, 20: 1285.
[26]
Chen C H , Tierce N T , Leung M K , Chiu T L , Lin C F , Bardeen C J , Lee J H. Adv. Mater., 2018, 30: 1804850.
[27]
Fukagawa H , Shimizu T , Ohbe N , Tokito S , Tokumaru K , Fujikake H. Org. Electron., 2012, 13: 1197.
[28]
Zhou J , Chen P , Wang X , Wang Y , Wang Y , Li F , Yang M , Huang Y , Yu J , Lu Z. Chem. Commun., 2014 50: 7586.
[29]
Zhang S , Yao L , Peng Q , Li W , Pan Y , Xiao R , Gao Y , Gu C , Wang Z , Lu P , Li F , Su S , Yang B , Ma Y. Adv. Funct. Mater., 2015, 25: 1755.
[30]
Pan Y , Li W , Zhang S , Yao L , Gu C , Xu H , Yang B , Ma Y. Adv. Opt. Mater., 2014, 2: 510.
[31]
Liang X , Wang Z , Wang L , Hanif M , Hu D , Su S , Xie Z , Gao Y , Yang B , Ma Y. Chin. J. Chem., 2017, 35: 1559.
[32]
Tang X , Li X L , Liu H , Gao Y , Shen Y , Zhang S , Lu P , Yang B , Su S J , Ma Y. Dyes Pigm., 2018, 149: 430.
[33]
Zhou C , Xiao S , Wang M , Jiang W , Liu H , Zhang S , Yang B. Front. Chem., 2019, 7: 141.
[34]
Chen Y , Yang L , Huang Y , Obolda A , Abdurahman A , Lu Z , Li F. J. Phys. Chem. Lett., 2019, 10: 48.
[35]
Kawamura Y , Goushi K , Brooks J , Brown J J , Sasabe H , Adachi C. Appl. Phys. Lett., 2005, 86: 71104.
[36]
Adachi C , Kwong R C , Djurovich P , Adamovich V , Baldo M A , Thompson M E , Forrest S R. Appl. Phys. Lett., 2001, 79: 2082.
[37]
Tsuboi T , Murayama H , Yeh S J , Chen C T. Opt. Mater., 2007, 29: 1299.
[38]
Zhao B , Zhang T , Li W , Su Z , Chu B , Yan X , Jin F , Gao Y , Wu H. , Org. Electron. 2015, 23: 208.
[39]
Zhao B , Miao Y , Wang Z , Wang K , Wang H , Hao Y , Xu B , Li W. Nanophotonics, 2017, 6: 1133.
[40]
Liu Z W , Helander M G , Wang Z B , Lu Z H. J. Phys. Chem. C, 2010, 114: 11931.
[41]
Song W , Lee I , Lee J Y. Adv. Mater., 2015, 27: 4358.
[42]
Furukawa T , Nakanotani H , Inoue M , Adachi C. , Sci.Rep. 2015, 5: 8429.
[43]
Song W , Lee I H , Hwang S H , Lee J Y. Org. Electron., 2015, 23: 138.
[44]
Wu Z , Yu L , Zhou X , Guo Q , Luo J , Qiao X , Yang D , Chen J , Yang C , Ma D. Adv. Opt. Mater., 2016, 4: 1067.
[45]
Han S H , Lee J Y. J. Mater. Chem. C, 2018, 6: 1504.
[46]
Wang Z , Li X L , Ma Z , Cai X , Cai C , Su S J. Adv. Funct. Mater., 2018, 28: 1706922.
[47]
Song X , Zhang D , Lu Y , Yin C , Duan L. , Adv. Mater. 2019, 31: 1901923.
[48]
Goushi K , Adachi C. Appl. Phys. Lett., 2012, 101: 023306.
[49]
Goushi K , Yoshida K , Sato K , Adachi C. Nat. Photonics, 2012, 6: 253.
[50]
Sarma M , Wong K T. ACS Appl. Mater. Interfaces, 2018, 10: 19279.
[51]
Jankus V , Chiang C J , Dias F , Monkman A P. Adv. Mater., 2013, 25: 1455.
[52]
Kim H G , Kim K H , Moon C K , Kim J J. Adv. Opt. Mater., 2017, 5: 1600749.
[53]
Ki K H , Moon C K , Sun J W , Sim B , Kim J J. Adv. Opt. Mater., 2015, 3: 895.
[54]
Zhao B , Zhang T , Chu B , Li W , Su Z , Wu H , Yan X , Jin F , Gao Y , Liu C. Sci. Rep., 2015, 5: 10697.
[55]
Hung W Y , Chiang P Y , Lin S W , Tang W C , Chen Y T , Liu S H , Chou P T , Hung Y T , Wong K T. ACS Appl.Mater. Interfaces, 2016, 8: 4811.
[56]
Yuan S , Du X , Zhao J , Liu W , Lin H , Zheng C , Tao S , Zhang X. , Org. Electron. 2016, 39: 10.
[57]
Zhao J , Du X , Yuan S , Zheng C , Lin H , Tao S. Org. Electron., 2017, 43: 136.
[58]
Chen D , Liu K , Gan L , Liu M , Gao K , Xie G , Ma Y , Cao Y , Su S J. Adv. Mater., 2016, 28: 6758.
[59]
Zhao B , Miao Y , Wang Z , Chen W , Wang K , Wang H , Hao Y , Xu B , Li W. , Org. Electron. 2016, 37: 1.
[60]
Li, Gan L , Cai X , Li X L , Wang Z , Gao K , Chen D , Cao Y , Su S J. Adv. Mater. Interfaces, 2018, 5: 1800025.
[61]
Ki K H , Yoo S J , Kim J J. Chem. Mater., 2016, 28: 1936.
[62]
Kim H G , Shin H , Ha Y H , Kim R , Kwon S K , Kim Y H , Kim J J. ACS Appl. Mater. Interfaces, 2019, 11: 26.
[63]
Liu T , Xie G , Zhong C , Gong S , Yang C. Adv. Funct. Mater., 2018, 28: 1706088.
[64]
Chen L , Zhang S , Li H , Chen R , Jin L , Yuan K , Li H , Lu P , Yang B , Huang W. J. Phys. Chem. Lett., 2018, 9: 5240.
[65]
Zhang S , Li W , Yao L , Pan Y , Shen F , Xiao R , Yang B , Ma Y. Chem. Commun., 2013, 49: 11302.
[66]
Dey A , Kabra D. J Phys Chem A., 2019, 123: 4858.
[1] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[2] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[3] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[4] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[5] Bingde Zheng, Yuanyuan Zhao, Hongcai Li, Biyuan Zheng, Meirong Ke, Jiandong Huang*. Activatable Photodynamic Anticancer Photosensitizers [J]. Progress in Chemistry, 2018, 30(9): 1403-1414.
[6] Xiangmei Liu, Kang Tian, Chengfeng Xue, Yifan Han, Shujuan Liu, Qiang Zhao*. Application of X-Ray Excited Phosphors in Photodynamic Therapy [J]. Progress in Chemistry, 2017, 29(12): 1488-1498.
[7] Fan Xiao, Li Yanyan, Liu Yingya, Cao Changsheng, Li Haitao. Application of Single Molecule Fluorescence Techniques on Telomere and Telomerase [J]. Progress in Chemistry, 2014, 26(12): 1987-1996.
[8] Sun Huafei, Pan Tingting, Hu Guiqi, Sun Yuanwei, Wang Dongting, Zhang Xianxi. Ruthenium Sensitizers for Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2014, 26(04): 609-625.
[9] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[10] Zhang Xinglin, Yang Huiran, Sun Huibin, Liu Shujuan, Zhao Qiang*, Huang Wei*. Development of Energy Upconversion Based on Triplet-Triplet Annihilation [J]. Progress in Chemistry, 2012, (10): 1880-1889.
[11] Zhang Weiwei, Zhong Xinxin, Si Yubing, Zhao Yi. Non-Condon Effect and Time-Dependent Wave-Packet Method on Electron Transfer [J]. Progress in Chemistry, 2012, 24(06): 1166-1174.
[12] Wu Guohua, Kong Fantai, Weng Jian, Dai Songyuan, Xi Xiaowang, Zhang Changneng. Organic Dye Sensitizers and Their Application in Dye-Sensitized Solar Cell [J]. Progress in Chemistry, 2011, 23(9): 1929-1935.
[13] Li Xianggao, Lü Haijun, Wang Shirong, Guo Junjie, Li Jing. Sensitizers of Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2011, 23(0203): 569-588.
[14] . Photoinduced Intramolecular Energy Transfer in Dendrimers [J]. Progress in Chemistry, 2010, 22(10): 2033-2052.
[15] Yang Xinguo Zhang Deng Tang Ruiren. Dendrimers with Porphyrin Core [J]. Progress in Chemistry, 2009, 21(12): 2595-2604.