中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1811-1823 DOI: 10.7536/PC160520 Previous Articles   Next Articles

• Review and comments •

Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures

Jiang He1, Jin Jibiao1, Chen Runfeng1*, Zheng Chao1, Huang Wei1,2*   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274065, 21304049).
PDF ( 1019 ) Cited
Export

EndNote

Ris

BibTeX

Thermally activated delayed fluorescence (TADF) materials, capable of efficient reverse intersystem crossing (RISC) from the lowest triplet excited state (T1) to the lowest singlet excited state (S1) to use triplet excitons for photoluminescence with theoretically 100% exciton harvesting in emission, have attracted great attention in recent research of organic electronics, especially in the field of organic light emitting diodes (OLEDs). The singlet-triplet energy splitting (ΔEST) between S1 and T1 should be low, which is a key point to facilitate the RISC process in tuning triplet excitons to singlet excitons for delayed fluorescence emission. With the significant advantages of convenient molecular design, easy preparation, rich optoelectronic properties, and excellent device performance, TADF materials with donor-acceptor (D-A) molecular structures are of central importance in the current development of high-performance TADF molecules. In this article, we review the basic molecular design principles of the D-A type TADF materials and summarize their molecular structure characteristics, optoelectronic properties and device application performance in the latest research progress, according to the varied types of acceptor building blocks. Finally, the existing problems, future opportunities and key challenges of TADF materials with D-A architectures are discussed to give a full view of this kind of new organic optoelectronic materials.

Contents
1 Introduction
2 Basic principles of TADF materials and applications
3 Molecular design of D-A type TADF materials
4 Intramolecular D-A type TADF molecules
4.1 Cyano-based TADF molecules
4.2 Nitrogen heterocycle-based TADF molecules
4.3 Diphenyl sulfoxide-based TADF molecules
4.4 Diphenyl ketone-based TADF molecules
4.5 10H-Phenoxaborin-based TADF molecules
5 Intermolecular D-A type TADF materials
6 D-A type TADF polymers
7 Conclusion

CLC Number: 

[1] Parker C A, Hatchard C G. Trans. Faraday Soc., 1961, 57:1894.
[2] Blasse G, McMillin D R. Chem. Phys. Lett., 1980, 70:1.
[3] Berberan-Santos M N, Garcia J M M. J. Am. Chem. Soc., 1996, 118:9391.
[4] Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21:4802.
[5] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492:234.
[6] Zhang Q, Kuwabara H, Potscavage W J, Huang S, Hatae Y, Shibata T, Adachi C. J. Am. Chem. Soc., 2014, 136:18070.
[7] Lee D R, Kim B S, Lee C W, Im Y, Yook K S, Hwang S, Lee J Y. Appl. Mater. Inter., 2015, 7:9625.
[8] Lee D R, Kim M, Jeon S K, Hwang S, Lee C W, Lee J Y. Adv. Mater., 2015, 27:5861.
[9] Nishide J, Nakanotani H, Hiraga Y, Adachi C. Appl. Phys. Lett., 2014, 104:233304.
[10] Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F. Adv. Mater., 2004, 16:432.
[11] Parker C A. Photoluminescence of Solutions. Elsevier Publishng Company, 1968.
[12] Valeur B, Berberan-Santos M N. Molecular Fluorescence:Principles and Applications. 2nd ed. NY:John Wiley & Sons, 2013.
[13] Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26:7931.
[14] Lin T, Chatterjee T, Tsai W, Lee W, Wu M, Jiao M, Pan K, Yi C, Chung C, Wong K, Wu C. Adv. Mater., 2016, 28:6976.
[15] Wu S, Aonuma M, Zhang Q, Huang S, Nakagawa T, Kuwabara K, Adachi C. J. Mater. Chem. C., 2014, 2:421.
[16] Murawski C, Leo K, Gather M C. Adv. Mater., 2013, 25:6801.
[17] Xie G, Li X, Chen D, Wang Z, Cai X, Chen D, Li Y, Liu K, Cao Y, Su S. Adv. Mater., 2016, 28:181.
[18] Wang H, Meng L, Shen X, Wei X, Zheng X, Lv X, Yi Y, Wang Y, Wang P. Adv. Mater., 2015, 27:4041.
[19] Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat. Photonics., 2014, 8:326.
[20] Erickson N C, Holmes R J. Adv. Funct. Mater., 2014, 24:6074.
[21] Zhang D, Duan L, Li Y, Li H, Bin Z, Zhang D, Qiao J, Dong G, Wang L, Qiu Y, Adv. Funct. Mater., 2014, 24:3551.
[22] Komino T, Nomura H, Koyanagi T, Adachi C. Chem. Mater., 2013, 25:3038.
[23] Tao Y, Xu L, Zhang Z, Chen R F, Li H H, Xu H, Zheng C, Huang W. J. Am. Chem. Soc., 2016, 138:9655.
[24] Leitl M J, Krylova V A, Djurovich P I, Thompson M E, Yersin H. J. Am. Chem. Soc., 2014, 136:16032.
[25] Chen T, Zheng L, Yuan J, An Z, Chen R, Tao Y, Li H, Xie X, Huang W. Sci. Rep. UK, 2015, 5:10923.
[26] Yao L, Yang B, Ma Y. Science China Chemistry, 2014, 57:335.
[27] Cho Y J, Yook K S, Lee J Y. Adv. Mater., 2014, 26:4050.
[28] Tang C, Yang T, Cao X, Tao Y, Wang F, Zhong C, Qian Y, Zhang X, Huang W. Adv. Opt. Mater., 2015, 3:786.
[29] Tao Y, Guo X, Hao L, Chen R, Li H, Chen Y, Zhang X, Lai W, Huang W. Adv. Mater., 2015, 27:6939.
[30] Klessinger M. Angew. Chem. Int. Edit., 1995, 34:549.
[31] Dias F B, Jankus V, Kamtekar K T, Santos J, Monkman A P. Adv. Mater., 2013, 25:3707.
[32] Saragi T, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Chem. Rev., 2007, 107:1011.
[33] Zhang Q S, Li J, Shizu K, Huang S P, Hirata S, Miyazaki H, Adachi C. J. Am. Chem. Soc., 2012, 134:14706.
[34] Lee S Y, Yasuda T, Yang Y S, Zhang Q, Adachi C. Angew. Chem. Int. Edit., 2014, 53:6402.
[35] Wang H, Xie L, Peng Q, Meng L, Wang Y, Yi Y, Wang P. Adv. Mater., 2014, 26:5198.
[36] Numata M, Yasuda T, Adachi C. Chem. Commun., 2015, 51:9443.
[37] Sun J W, Baek J Y, Kim K, Moon C, Lee J, Kwon S, Kim Y, Kim J. Chem. Mater., 2015, 27:6675.
[38] Lee J, Shizu K, Tanaka H, Nomura H, Yasuda T, Adachi C. J. Mater. Chem. C., 2013, 1:4599.
[39] Takahashi T, Shizu K, Yasuda T, Togashi K, Adachi C. Sci. Technol. Adv. Mater., 2014, 15:34202.
[40] Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv. Mater., 2013, 25:3319.
[41] Sagara Y, Shizu K, Tanaka H, Miyazaki H, Goushi K, Kaji H, Adachi C. Chem. Lett., 2015, 44:360.
[42] Kawasumi K, Wu T, Zhu T, Chae H S, van Voorhis T, Baldo M A, Swager T M. J. Am. Chem. Soc., 2015, 137:11908.
[43] Ohkuma H, Nakagawa T, Shizu K, Yasuda T, Adachi C. Chem. Lett., 2014, 43:1017.
[44] Li G, Kim C H, Zhou Z, Shinar J, Okumoto K, Shirota Y. Appl. Phys. Lett., 2006, 88:253505.
[45] Goushi K, Yoshida K, Sato K, Adachi C. Nat. Photonics., 2012, 6:253.
[46] Yassar A, Demanze F, Jaafari A, El Idrissi M, Coupry C. Adv. Funct. Mater., 2002, 12:699.
[47] Thomas K, Velusamy M, Lin J T, Tao Y T, Cheun C H. Adv. Funct. Mater., 2004, 14:387.
[48] Nakagawa T, Ku S Y, Wong K T, Adachi C. Chem. Commun., 2012, 48:9580.
[49] Mehes G, Nomura H, Zhang Q S, Nakagawa T, Adachi C. Angew. Chem. Int. Edit., 2012, 51:11311.
[50] Li B, Nomura H, Miyazaki H, Zhang Q, Yoshida K, Suzuma Y, Orita A, Otera J, Adachi C. Chem. Lett., 2014, 43:319.
[51] Cho Y J, Jeon S K, Chin B D, Yu E, Lee J Y. Angew. Chem. Int. Edit., 2015, 54:5201.
[52] Huang W, Meng H, Yu W L, Gao J, Heeger A J. Adv. Mater., 1998, 10:593.
[53] An Z F, Chen R F, Yin J, Xie G H, Shi H F, Tsuboi T, Huang W. Chem. Eur. J., 2011, 17:10871.
[54] Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl. Phys. Lett., 2011, 98:083302.
[55] Xiang Y P, Gong S L, Zhao Y B, Yin X J, Luo J J, Wu K L, Lu Z H, Yang C L. J. Mater. Chem. C., 2016, DOI:10.1039/C6TC02702D.
[56] Wong K, Wu C, Tsai W, Huang M, Hsu Y, Pan K, Huang Y, Ting H, Sarma M, Ho Y, Hu H, Chen C, Lee M, Lee W. Chem. Commun., 2015, 51:13662.
[57] Albrecht K, Matsuoka K, Fujita K, Yamamoto K. Angew. Chem. Int. Edit., 2015, 54:5677.
[58] Kulkarni A P, Tonzola C J, Babel A, Jenekhe S A. Chem. Mater., 2004, 16:4556.
[59] Zhu R, Wen G A, Feng J C, Chen R F, Zhao L, Yao H P, Fan Q L, Wei W, Peng B, Huang W. Macromol. Rapid Comm., 2005, 26:1729.
[60] Obolda A, Peng Q M, He C Y, Zhang T, Ren J J, Ma H W, Shuai Z G, Li F. Adv. Mater., 2016, 28:4740.
[61] Tanaka H, Shizu K, Lee J, Adachi C. The Journal of Physical Chemistry C, 2015, 119:2948.
[62] Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Angew. Chem. Int. Edit., 2015, 54:13068.
[63] Shizu K, Tanaka H, Uejima M, Sato T, Tanaka K, Kaji H, Adachi C. The Journal of Physical Chemistry C, 2015, 119:1291.
[64] Yu L, Wu Z, Xie G, Zhong C, Zhu Z, Cong H, Ma D, Yang C. Chem. Commun., 2016, 52, 11012.
[65] Xu S, Liu T, Mu Y, Wang Y, Chi Z, Lo C, Liu S, Zhang Y, Lien A, Xu J. Angew. Chem. Int. Edit., 2015, 54:874.
[66] Zhang Q, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T, Adachi C. Adv. Mater., 2015, 27:2096.
[67] Nasu K, Nakagawa T, Nomura H, Lin C J, Cheng C H, Tseng M R, Yasuda T, Adachi C. Chem. Commun., 2013, 49:10385.
[68] Kinoshita M, Kita H, Shirota Y. Adv. Funct. Mater., 2002, 12:780.
[69] Nagai A, Kobayashi S, Nagata Y, Kokado K, Taka H, Kita H, Suzuri Y, Chujo Y. J. Mater. Chem., 2010, 20:5196.
[70] Kitamoto Y, Namikawa T, Ikemizu D, Miyata Y, Suzuki T, Kita H, Sato T, Oi S. J. Mater. Chem. C, 2015, 3:9122.
[71] Liu X K, Chen Z, Zheng C J, Liu C L, Lee C S, Li F, Ou X M, Zhang X H. Adv.Mater., 2015, 27:2378.
[72] Liu W, Chen J, Zheng C, Wang K, Chen D, Li F, Dong Y, Lee C, Ou X, Zhang X. Adv. Funct. Mater., 2016, 26:2002.
[73] Chen D, Xie G, Cai X, Liu M, Cao Y, Su S. Adv. Mater., 2016, 28:239.
[74] Wang S, Wang X, Yao B, Zhang B, Ding J, Xie Z, Wang L. Sci. Rep. UK., 2015, 5:12487.
[75] Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv. Mater., 2015, 27:7236.
[76] Luo J, Xie G, Gong S, Chen T, Yang C. Chem. Commun., 2016, 52:2292.
[77] Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S, Monkman A P, Bryce M R, Dias F B. Adv. Opt. Mater., 2016, 4:597.
[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[3] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[4] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[5] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[6] Zhiwen Yang, Yingying Zhan, Shaomin Ji, Qingdan Yang, Qi Li, Yanping Huo. Boron-Containing Organic Light-Emitting Diodes: Materials and Devices [J]. Progress in Chemistry, 2019, 31(6): 906-928.
[7] Qinshan Cai, Shirong Wang, Yin Xiao, Xianggao Li. Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials [J]. Progress in Chemistry, 2018, 30(8): 1202-1221.
[8] Zhong Bofan, Wang Shirong, Xiao Yin, Li Xianggao. Bipolar Blue Fluorescent Materials for Organic Light-Emitting Devices [J]. Progress in Chemistry, 2015, 27(8): 986-1001.
[9] Yang Lei, Cheng Tao, Zeng Wenjin, Lai Wenyong, Huang Wei. Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices [J]. Progress in Chemistry, 2015, 27(11): 1615-1627.
[10] Su Bin, Zhao Jing, Liu Chunbo, Che Guangbo, Wang Qingwei, Xu Zhanlin. Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives [J]. Progress in Chemistry, 2013, 25(07): 1090-1101.
[11] Ma Zhijun, Lei Ting, Pei Jian*, Liu Chenjiang*. Blue Host Materials for Phosphorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2013, 25(06): 961-974.
[12] Liao Zhangjin, Zhu Tongjun, Mi Baoxiu, Gao Zhiqiang, Fan Quli, Huang Wei. Molecular Iridium(Ⅲ) Complexes and Their Corresponding Electrophosphorescent Devices [J]. Progress in Chemistry, 2011, 23(8): 1627-1643.
[13] Yunhua Xu,Junbiao Peng,Yong Cao**. Progress of White Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2006, 18(04): 389-398.
[14] Ma Chanqi,Wang Xuesong**,Zhang Baowen**,Cao Yi. Progress in Red Emitters for Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2004, 16(03): 463-.
[15] Ma Changqi,Wang Xuesong**,Zhang Baowen**,Cao Yi. Progress in Hole-Transport Materials for Use in Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2003, 15(06): 495-.