中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 908-916 DOI: 10.7536/PC151115 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review and comments •

Scanning Electrochemical Microscopy for Photoelectrochemical Energy Research

He Huichao1,2,3, Sean P. Berglund2, Buddie Mullins2*, Zhou Yong1,4, Ke Gaili1, Dong Faqin1*   

  1. 1. State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
    2. McKetta Department of Chemical Engineering and Department of Chemistry, University of Texas at Austin, Austin 78712, USA;
    3. Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510460, China;
    4. School of Physics, Nanjing University, Nanjing 211102, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China (973 Program)(No.2014CB846003), the Research Fund of Southwest University of Science and Technology (No. 15zx7104, 15zx7123) and the Cooperative Research Fund of Guangdong Provincial Key Laboratory of Mineral Physics and Materials (No.GLMPM-019).
PDF ( 725 ) Cited
Export

EndNote

Ris

BibTeX

Since introduced by Allen J. Bard and co-workers in 1986, scanning electrochemical microscopy (SECM) has been used as a powerful scanning probe technique in wide variety of fields, such as metal anti-corrosion, material characterization, biomedicine and new energy technology. In recent years, SECM plays a more and more important role in the field of photoelectrochemical energy research. In this paper, we introduce the basic principle as well as feedback and generation-collection operation-modes of SECM and highlight some of the recent advances on SECM applied to studies of solar cell and solar water splitting. SECM coupling with light source used as an effective tool for investigating interfacial charge transfer process and the regeneration kinetics of dyes in dye-sensitized solar cell are described. Additionally, SECM used as a powerful screening technique for developing efficient photocatalysts is discussed. Furthermore, we provide a brief research example that related SECM used as a combinatorial screening technique to investigate Ⅲ A, Ⅳ A and ⅤA group metal ions as dopants for WO3 for photoelectrochemical water oxidation. This work has been conducted in our group recently, and it is reported for the first time. The details of this work are presented, including preparing doped WO3 arrays on FTO glass substrate, setting up SECM testing system, photoelectrochemical scanning doped WO3 arrays, screening scan results and proving scan results on scaled-up films. The SECM screening results show that 2%~4% In3+ doped WO3, 2%~4% Sn4+ doped WO3 and 4%~6% Sb5+ doped WO3 have higher photoelectrochemical activity than un-doped WO3. On the basis of research results, it is concluded that SECM is a convenient and efficient screening technique, has a promising application prospect in the development of photocatalysts. Finally, we briefly describe and forecast the development trend of SECM in the field of photoelectrochemical energy research.

Contents
1 Introduction
2 SECM operation modes
2.1 Feedback mode
2.2 Generation-collection mode
3 SECM used as tool for photoelectrochemical energy research
4 SECM used as screening technique for developing metal ion doped WO3 photocatalysts
5 Conclusion and outlook

CLC Number: 

[1] Engstrom R C, Weber M, Wunder D J, Burgess R, Winquist S. Anal. Chem., 1986, 58: 844.
[2] Liu H Y, Fan F R F, Lin C W, Bard A J. J. Am. Chem. Soc., 1986, 108: 3838.
[3] Bard A J, Fan F R F, Kwak J, Lev O. Anal.Chem., 1989, 61: 132.
[4] Amemiya S, Bard A J, Fan F R F, Mirkin M V, Unwin P R. Annu. Rev. Anal. Chem., 2008, 1: 95.
[5] Bard A J, Fan F R F, Pierce D T, Unwin P R, Wipf D O, Zhou F. Science, 1991, 254: 68.
[6] Bard A J, Mirkin M V. Scanning Electrochemical Microscopy. 2nd ed. NY: CRC Press, 2012. 670.
[7] 邵元华(Shao Y H). 分析化学(Chinese Journal of Analytical Chemistry), 1999, 11: 1348.
[8] 卢小泉(Lu X Q), 王晓强(Wang X Q), 胡丽娜(Hu L N). 化学通报(Chemistry), 2004, 67: 673.
[9] 杨晓辉(Yang X H), 赵瑜(Zhao Y), 谢青季(Xie Q J), 姚守拙(Yao S Z). 分析科学学报(Journal of Analytical Science), 2004, 2: 210.
[10] 李保华(Ma B H), 马燕(Ma Y), 黄蕾(Huang L). 化学通报(Chemistry), 2013, 76: 124.
[11] 曹发和(Cao F H), 夏妍(Xia Y), 刘文娟(Liu W J), 常林荣(Chang L R), 张鉴清(Zhang J Q). 电化学(Electrochemistry), 2013, 5: 393.
[12] 张赟(Zhang,Y), 吴晓梅(Wu X M), 曾小勤(Zeng X Q), 丁文江(Ding W J). 电源技术(Chinese Journal of Power Sources), 2015, 5:1129.
[13] Wain A J. Electrochem. Commun., 2014, 46: 9.
[14] Sun P, Laforge F O, Mirkin M V. Phys. Chem. Chem. Phys., 2007, 9: 802.
[15] Rodriguez L J, Alpuche A M A, Bard A J. J. Am. Chem. Soc., 2008, 130: 16985.
[16] Unwin P R, Bard A J. J. Phys. Chem., 1992, 96:5035.
[17] Bozic B, Figgemeier E. Chem. Comm., 2006, 21: 2268.
[18] Figgemeier E, Kylberg W H, Bozic B. Photonics for Solar Energy Systems, Strasbourg: SPIE, 2006. 6197.
[19] Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Chem. Eur. J., 2006, 12: 5832.
[20] Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Chemistry, 2006, 12: 5832.
[21] Shen Y, Tefashe U M, Nonomura K, Loewenstein T, Schlettwein D, Wittstock G. Electrochim. Acta, 2009, 55: 458.
[22] Tefashe U M, Loewenstein T, Miura H, Schlettwein D, Wittstock G. J. Electroanal. Chem., 2010, 650: 24.
[23] Tefashe U M, Rudolph M, Miura H, Schlettwein D, Wittstock G. Phys. Chem. Chem.Phys., 2012, 14: 7533.
[24] Tefashe U M, Nonomura K, Vlachopoulos N, Hagfeldt A, Wittstock G. J. Phys. Chem. C, 2012, 116: 4316.
[25] Martin C J, Bozic-Weber B, Constable E C, Glatzel T, Housecroft C E, Wright I A. Electrochim. Acta, 2014, 119: 86.
[26] Alemu G, Cui J, Cao K, Li J, Shen Y, Wang M. RSC Adv., 2014, 4: 51374.
[27] Alemu G, Zhang B, Li J, Xu X, Cui J, Shen Y, Wang M. Nano, 2014, 9: 1793.
[28] Zhang B, Yuan H, Zhang X, Huang D, Li S, Wang M, Shen Y. ACS Appl. Mater. Interfaces, 2014, 6: 20913.
[29] Zhang B, Xu X, Zhang X, Huang D, Li S, Zhang Y, Zhan F, Deng M, He Y, Chen W, Shen Y, Wang M. ChemPhysChem, 2014, 15: 1182.
[30] Alemu G, Li J P, Cui J, Xu X B, Zhang B Y, Cao K, Shen Y, Cheng Y B, Wang M K. J. Mater. Chem. A, 2015, 3: 9216.
[31] Berglund S P, Hoang S, Minter R L, Fullon R, Mullins C B. J. Phys. Chem. C, 2013, 117: 25248.
[32] Lee J W, Ye H C, Pan S L, Bard A J. Anal. Chem., 2008, 80: 7445.
[33] Liu G, Liu C, Bard A J. J. Phys. Chem. C, 2010, 114: 20997.
[34] Liu W, Ye H, Bard A J. J. Phys. Chem. C, 2010, 114: 1201.
[35] Ye H, Lee J, Jang J S, Bard A J. J. Phys. Chem. C, 2010, 114: 13322.
[36] Jang J S, Lee J, Ye H, Fan F R F, Bard A J. J. Phys. Chem. C, 2009, 113: 6719.
[37] Zhang F, Roznyatoyskiy V, Fan F R F, Lynch V, Sessler J L, Bard A.J. J. Phys. Chem. C, 2011, 115: 2592.
[38] Bhattacharya C, Lee H C, Bard A J. J. Phys. Chem. C, 2013, 117: 9633.
[39] Park H S, Kweon K E, Ye H, Paek E, Hwang G S, Bard A J. J. Phys.Chem. C, 2011, 115: 17870.
[40] Berglund S P, Lee H C, Nunez P D, Bard A J, Mullins C B. Phys. Chem. Chem. Phys., 2013, 15: 4554.
[41] Weng Y C, Chou Y D, Chang C J, Chan C C, Chen K Y, Su Y F. Electrochim. Acta, 2014, 125: 354.
[42] Weng Y C, Chou Y D. Electrochim. Acta, 2015, 153: 416.
[43] Yu C W, Kuan T H. Int. J. Hydrogen Energy, 2015, 40: 3238.
[44] Ahn H S, Bard A J. J. Am. Chem. Soc., 2015, 137: 612.
[45] Zigah D, Rodriguez L J, Bard A J. Phys. Chem. Chem. Phys., 2012, 14: 12764.
[46] Park H S, Leonard K C, Bard A J. J. Phys. Chem. C, 2013, 117: 12093.
[47] Zhang B, Zhang X, Xiao X, Shen Y. ACS Appl. Mater. Interfaces, 2016, 8: 1606.
[48] Xu Y, Schoonen M A A. Am. Mineral., 2000, 85: 543.
[49] Butler M A. J. Appl. Phys., 1977, 48: 1914.
[50] Pesci F M, Cowan A J, Alexander B D, Durrant J R, Klug D R. J. Phys. Chem. Lett., 2011, 2: 1900.
[51] Chakrapani V, Thangala J, Sunkara M K. Int. J. Hydrogen Energy, 2009, 34: 9050.
[52] Augustynski J, Solarska R, Hagemann H, Santato C. Solar Hydrogen and Nanotechnology. San Diego: SPIE, 2006. 6340.
[53] Hameed A, Gondal M A, Yamani Z H. Catal.Comm., 2004, 5: 715.
[54] Miseki Y, Kusama H, Sugihara H, Sayama K. J. Phys. Chem. Lett., 2010, 1: 1196.
[55] Gui M S, Zhang W D, Chang Y Q, Yu Y X. Chem. Eng. J., 2012, 197: 283.
[56] He G H, He G L, Li A J, Li X, Wang X J, Fang Y P, Xu Y H. J. Mol. Catal. A: Chem., 2014, 385: 106.
[57] Zhu Z, Yan Y, Li J. Micro Nano Lett., 2015, 10: 460
[58] Peng Y, Chen Q G, Wang D, Zhou H Y, Xu A W. CrystEngComm., 2015, 17: 569.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[4] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[5] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[6] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[10] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[13] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[14] Jun Jin, Ziheng Lin, Lei Shi. One-Dimensional New Carbon Allotrope: Carbon Chain [J]. Progress in Chemistry, 2021, 33(2): 188-198.
[15] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.