English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2334-2347 DOI: 10.7536/PC201111 前一篇   后一篇

• 综述 •

硫化铟锌的改性合成及光催化特性

毕洪飞1, 刘劲松1,*(), 吴正颖2, 索赫1, 吕学良1, 付云龙1   

  1. 1 南京航空航天大学材料科学与技术学院 南京 211106
    2 苏州科技大学化学生物与材料工程学院 江苏省环境功能材料重点实验室 苏州 215009
  • 收稿日期:2020-11-09 修回日期:2021-03-06 出版日期:2021-12-20 发布日期:2021-07-29
  • 通讯作者: 刘劲松
  • 基金资助:
    江苏省高效电化学储能技术重点实验室开放课题基金项目(EEST2020-1); 苏州市科技发展计划项目(SYG201818); 江苏省水处理技术与材料协同创新中心(XTCXSZ2020-1)

Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide

Hongfei Bi1, Jinsong Liu1(), Zhengying Wu2, He Suo1, Xueliang Lv1, Yunlong Fu1   

  1. 1 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics,Nanjing 211106, China
    2 Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology,Suzhou 215009, China
  • Received:2020-11-09 Revised:2021-03-06 Online:2021-12-20 Published:2021-07-29
  • Contact: Jinsong Liu
  • Supported by:
    Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies (No. EEST2020-1)、the Science and Technology Development Project of Suzhou(SYG201818); Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment(XTCXSZ2020-1)

随着社会经济的高速发展,能源的短缺和生态的破坏引起了人们的关注。近年来,寻找合适的解决方案已成为关注的重点。作为一种绿色环保技术,光催化由于其高效、低成本等优点而成为能源和环境问题的研究热点。在许多光催化材料中,三元硫化物硫化铟锌(ZnIn2S4)由于具有可见光响应特性、简单的制备方法和出色的稳定性而表现出巨大的潜力。然而,较高的载流子复合率限制了其光催化性能。近年来,许多研究报道了改性ZnIn2S4以提高其光催化性能,在此,本文详细介绍了各种改性研究,包括ZnIn2S4单体的合成、半导体化合物的结构、贵金属沉积、碳元素改性、离子掺杂。然后,系统完整地总结了ZnIn2S4在光催化、降解有机污染物、去除六价铬、还原CO2和有机合成等方面表现出的光催化特性和机理。最后,对ZnIn2S4的发展前景提出了展望,以期ZnIn2S4光催化剂得到更广泛和深入的研究,尽快在实际生产中得到应用。

With rapid development of social economy, shortage of energy and destruction of ecology have gradually aroused people’s strong concern. In recent years, finding the suitable solution has become the focus of attention. As a green environmental protection technology, photocatalysis has become a research hotspot to deal with energy and environmental issues because of its high efficiency and low cost. In many photocatalytic materials, ternary sulfide Indium Zinc Sulfide (ZnIn2S4) has shown great potential due to visible-light-responding characteristics, simple preparation and excellent stability. However, high carrier recombination rate of the ZnIn2S4 limits its photocatalytic activity. In recent years, many studies on modifying ZnIn2S4 have been reported. Here, different modification researches are introduced in detail including synthesis of ZnIn2S4 monomer, construction of semiconductor compounds, noble metal deposition, carbon element modification, and ion doping. Then, their photocatalytic properties and corresponding mechanisms including hydrogen evolution, degradation of organic pollutants, reduction of hexavalent chromium and CO2, and organic synthesis are systematically summarized. Finally, development direction and prospect of ZnIn2S4 are put forward for more extensive and in-depth research on photocatalytic properties and application in practical production as soon as possible.

Contents

1 Introduction

1.1 Photocatalytic technology

1.2 Preparation of indium zinc sulfide

2 Synthesis and modification of indium zinc sulfide

2.1 Synthesis of indium zinc sulfide monomer

2.2 Semiconductor compounds construction

2.3 Nobel metal deposition

2.4 Carbon element modification

2.5 Ion doping

3 Application of indium zinc sulfide in the field of photocatalysis

3.1 Photocatalytic hydrogen evolution

3.2 Photocatalytic degradation of organic pollutants

3.3 Application of indium zinc sulfide in other fields

3.4 Stability of indium zinc sulfide

4 Conclusion and outlook

()
图1 (a)半导体光催化原理的示意图[7], (b)六方相[8]和(c)立方相ZnIn2S4[9]的晶体结构, (d)六方相和(e)立方相ZnIn2S4的能带结构[10]
Fig.1 (a) Schematic illustration of the principle of semi-conductor photocatalysis[7], crystal structures of (b) hexagonal[8] and (c) cubic ZnIn2S4[9], energy band structure of (d) hexagonal and (e) cubic ZnIn2S4[10]
图2 (a)ZnIn2S4纳米管和纳米带的生长机理示意图[8], (b)在CTAB和PEG-6000存在下获得的ZnIn2S4微球和纳米线的生长机理示意图[8]
Fig.2 (a) Schematic illustration of the growth mechanism for ZnIn2S4 nanotubes and nanoribbons[8], (b) Schematic illustration of the growth mechanism of ZnIn2S4 microsphere and nanowires obtained in the presence of CTAB and PEG-6000[8]
图3 (a)In2O3纳米立方体/ZnIn2S4纳米片和In2O3纳米立方体/ZnIn2S4纳米颗粒的制备示意图, (b)In2O3纳米立方体/ZnIn2S4纳米片和(c)In2O3纳米立方体/ZnIn2S4纳米颗粒的SEM图[37]
Fig.3 (a) Schematic of the preparation for In2O3 nanocube/ZnIn2S4 nanosheet and In2O3 nanocube/ZnIn2S4 nanoparticle, SEM images of (b) In2O3 nanocube/ZnIn2S4 nanosheet and (c) In2O3 nanocube/ZnIn2S4 nanoparticle[37]
图4 (a)不同结构中的多种光反射的示意图[35], (b)TiO2@ZnIn2S4的制备示意图[84], (c)TiO2@ZnIn2S4的TEM图[84]
Fig.4 (a) Illustration of multiple light reflections in different structure[35], (b) Schematic of the preparation for TiO2@ZnIn2S4 hollow structure[84], (c) TEM image of TiO2@ZnIn2S4 hollow structure[84]
图5 (a) Au-Pd/ZnIn2S4和(b) CQDs/ZnIn2S4的TEM图[98,100]
Fig.5 TEM images of (a) Au-Pd/ZnIn2S4 and (b) CQDs/ZnIn2S4[98,100]
表1 不同ZnIn2S4基光催化剂的产氢性能的研究
Table 1 Examples of hydrogen production performance by different ZnIn2S4-based photocatalysts
Photocatalyst Hydrogen production rate Lighting conditions Sacrificial reagents ref
ZnIn2S4 ultra-thin nanosheet 1.94 mmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 16
ZnIn2S4 ultra-thin nanosheet with sulfur vacancies 13.478 mmol/g/h 500 W Xenon lamp, λ≥400 nm TEOA 15
MoS2/ZnIn2S4 4287.5 μmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 54
MoS2/ZnIn2S4 2512.5 μmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 53
MoS2/ZnIn2S4 8898 μmol/g/h 300 W Xenon lamp, λ≥400 nm TEOA 86
WS2/ZnIn2S4 293.3 μmol/g/h 150 W Xenon lamp, λ≥400 nm NaS2/Na2SO3 34
WS2/ZnIn2S4 2.55 mmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 62
WS2/ZnIn2S4 199.1 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 61
NiS/ZnIn2S4 3.3 mmol/g/h 320 W Xenon lamp, λ≥420 nm Lactic acid 57
NiS/ZnIn2S4 2094 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 56
AgIn5S8/ZnIn2S4 949 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 65
g-C3N4/ZnIn2S4 7740 μmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 69
Au/thiol-UiO66/ZnIn2S4 3916 μmol/g/h 300 W Xenon lamp, λ: 420~780 nm NaS2/Na2SO3 73
ZnIn2S4/NH2-MIL-125(Ti) 2204.2 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 76
TiO2/ZnIn2S4 hollow structure 1129.5 μmol/g/h 300 W Xenon lamp, visible light Lactic acid 84
Co9S8/ZnIn2S4 hollow structure 6250 μmol/g/h 300 W Xenon lamp, λ≥400 nm TEOA 64
2D/2D MoS2/ZnIn2S4 4.974 mmol/g/h 300 W Xenon lamp, visible light Lactic acid 55
2D/2D CuInS2/ZnIn2S4 3430.2 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 66
MoS2/CQDs/ZnIn2S4 3 mmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 113
NiS/CQDs/ZnIn2S4 568 μmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 114
WO3/ZnIn2S4 2202.9 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 42
Cu3P/ZnIn2S4 2561.1 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 80
RGO/ZnIn2S4 1210 μmol/g/h 350 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 103
RGO/ZnIn2S4 817 μmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 104
Ca-Doped ZnIn2S4 692 μmol/g/h 300 W Xenon lamp, λ≥430 nm NaS2/Na2SO3 107
Cu-Doped ZnIn2S4 757.5 μmol/g/h 300 W Xenon lamp, λ≥430 nm NaS2/Na2SO3 110
Oxygen-Doped ZnIn2S4 2120 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 112
图6 (a) MoS2/ZnIn2S4的光催化产氢机理[54], (b) MoS2/ZnIn2S4光催化产氢性能[53], (c) 2D/2D CuInS2/ZnIn2S4的光催化产氢机理[66], (d) NiS/CQDs/ZnIn2S4的光催化产氢机理[114]
Fig.6 (a) Photocatalytic H2 evolution mechanism of the MoS2/ZnIn2S4[54], (b) Photocatalytic H2 evolution performance of the MoS2/ZnIn2S4[53], (c) Photocatalytic H2 evolution mechanism of 2D/2D CuInS2/ZnIn2S4[66], (d) Photocatalytic H2 evolution mechanism of the NiS/CQDs/ZnIn2S4[114]
图7 (a) Z-scheme光催化系统的图解[41], (b) 掺氧ZnIn2S4的产氢性能及循环测试[112]
Fig.7 (a) An illustration of a Z-scheme photocatalytic system[41], (b) Photocatalytic H2 evolution performance and cycling measurement of the O-doped ZnIn2S4[112]
表2 不同ZnIn2S4基光催化剂的降解性能的研究
Table 2 Examples of degradation performance by different ZnIn2S4-based photocatalysts
Photocatalyst Organic Pollutants Degradation efficiency Lighting conditions ref
g-C3N4/ZnIn2S4 (20 mg) MO (50 mL, 10 mg/L) 95.3% (120 min) 500 W Xenon lamp, λ≥420 nm 70
g-C3N4/ZnIn2S4 (20 mg) Phenol (50 mL, 10 mg/L) 72.3% (240 min) 500 W Xenon lamp, λ≥420 nm 70
g-C3N4/ZnIn2S4 (50 mg) TC (100 mL, 20 mg/L) 100% (120 min) 300 W Xenon lamp, λ≥400 nm 71
BiPO4/ZnIn2S4 (15 mg) TC (50 mL, 40 mg/L) 84% (90 min) 300 W Xenon lamp, visible light 119
MoS2/ZnIn2S4 (10 mg) MO (10 mL, 20 mg/L) 90% (60 min) 300 W Xenon lamp, λ≥400 nm 51
TiO2/ZnIn2S4 film (2*2 cm2) MB (5 mL, 3 mg/L) 91% (4 h) 100 W Incandescent lamp 120
CdIn2S4/ZnIn2S4 (40 mg) MO (80 mL, 10 mg/L) 99.7% (90 min) 500 W Halogen lamp, λ≥420 nm 89
CdIn2S4/ZnIn2S4 (40 mg) RhB (80 mL, 10 mg/L) 100% (70 min) 500 W Halogen lamp, λ≥420 nm 89
TiO2/ZnIn2S4 (30 mg) Carbamazepine (400 mL, 100 mg/L) 100% (4 h) Sunlight, λ≥400 nm 38
In2O3/ZnIn2S4 (25 mg) 2,4-dichlorophenol (50 mL, 20 mg/L) 95.8% (120 min) 300 W Xenon lamp, λ≥420 nm 37
MIL-88A(Fe)@ZnIn2S4 (mg) SMZ (40 mL, 20 mg/L) 99.6% (60 min) 500 W Xenon lamp 74
TiO2/ZnIn2S4 hollow structure (20 mg) LEV (80 mL, 10 mg/L) 81.07% (4 h) 250 W Xenon lamp, λ≥400 nm 85
TiO2/ZnIn2S4 hollow structure (20 mg) TC (80 mL, 10 mg/L) 82.74% (90 min) 250 W Xenon lamp, λ≥400 nm 85
TiO2/ZnIn2S4 hollow structure (20 mg) RhB (80 mL, 20 mg/L) 98.41% (60 min) 250 W Xenon lamp, λ≥400 nm 85
2D/2D BiOCl/ZnIn2S4 (200 mg) Phenol (200 mL, 20 mg/L) 77.4% (6 h) 300 W Xenon lamp, λ≥400 nm 81
2D/2D g-C3N4/ZnIn2S4 (20 mg) TC (50 mL, 50 mg/L) 85% (120 min) 500 W Xenon lamp, λ≥420 nm 82
CQDs/BiOCl/ZnIn2S4 (50 mg) TC (100 mL, 10 mg/L) 83.7% (2 h) 300 W Xenon lamp, λ≥400 nm 121
AgPO4/g-C3N4/ZnIn2S4 (50 mg) TC (100 mL, 20 mg/L) 83% (60 min) 300 W Xenon lamp, λ≥400 nm 122
WO2.72/ZnIn2S4 (30 mg) TC (30 mL, 50 mg/L) 97.3% (60 min) 300 W Xenon lamp, λ≥400 nm 123
Bi2S3/ZnIn2S4 (50 mg) MB (100 mL, 40 mg/L) 95.4% (150 min) 30 W Xenon lamp, visible light 63
Au-MoS2/ZnIn2S4 (10 mg) Phenol (10 mL, 20 mg/L) 84% (60 min) Sunlight 87
Bi2WO6/ZnIn2S4 (100 mg) MTZ (500 mL, 10 mg/L) 56% (250 min) 500 W Halogen lamp 45
MO3/ZnIn2S4 (200 mg) MO (200 mL, 30 mg/L) 98% (100 min) 500 W Halogen lamp, λ≥420 nm 48
MO3/ZnIn2S4 (200 mg) RhB (200 mL, 10 mg/L) 99% (80 min) 500 W Halogen lamp, λ≥420 nm 48
BiVO4/ZnIn2S4 (20 mg) MO (100 mL, 15 mg/L) 86% (240 min) 300 W LED lamp, visible light 44
CQDs/ZnIn2S4 (50 mg) MO (100 mL, 10 mg/L) 100% (40 min) 300 W Xenon lamp, λ≥420 nm 101
CQDs/ZnIn2S4 (20 mg) TC (80 mL, 10 mg/L) 85.07% (90 min) 250 W Xenon lamp, λ≥420 nm 100
Sm-Doped ZnIn2S4 (50 mg) RhB (50 mL, 20 mg/L) 100% (90 min) 400 W Xenon lamp, λ≥420 nm 106
图8 (a) CQDs/BiOCl/ZnIn2S4的光催化降解机理[121], (b) 乙炔吡喃在WO3/ZnIn2S4上光催化降解活性自由基的捕获实验[127], (c) WO3/ZnIn2S4的光催化活性增强的机理[127], (d) CQDs/ZnIn2S4的光催化活性增强的机理[100]
Fig.8 (a) Photocatalytic degradation mechanism of the CQDs/BiOCl/ZnIn2S4[121], (b) Trapping experiment of active species during the photocatalytic degradation of nitenpyram over WO3/ZnIn2S4[127], (c) Mechanism of the enhanced photocatalytic activity of WO3/ZnIn2S4[127], (d) Mechanism of the enhanced photocatalytic activity of CQDs/ZnIn2S4[100]
图9 (a) Au-MoS2/ZnIn2S4的光催化活性增强的机理[87], (b)Sm-ZnIn2S4光催化降解RhB的增强机理[106]
Fig.9 (a) Mechanism of the enhanced photocatalytic activity of Au-MoS2/ZnIn2S4[87], (b) Mechanism of the enhanced photocatalytic activity of Sm-ZnIn2S4 for degradation of RhB[106]
图10 (a) ZnIn2S4/CdS处理的Cr(Ⅵ)溶液的紫外可见吸收光谱[59], (b) 不同CeO2/ZnIn2S4样品光催化还原CO2制备的CH3OH的性能比较[47]
Fig.10 (a) UV-vis absorption spectra of Cr(Ⅵ) solution treated with ZnIn2S4/CdS[59], (b) Comparison of the photocatalytic CO2 reduction performance of different CeO2/ZnIn2S4 samples for CH3OH production[47]
图11 (a) Ni2P/ZnIn2S4光催化产氢的循环性能[78], (b) ZnIn2S4和WO2.72/ZnIn2S4光催化降解TC的循环性能[123]
Fig.11 (a) Cycling performance of photocatalytic hydrogen evolution over Ni2P/ZnIn2S4[78], (b) Cycling performance of photocatalytic degradation of TC over ZnIn2S4 and WO2.72/ZnIn2S4[123]
[1]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0     URL    
[2]
Carey J H, Oliver B G. Nature, 1976, 259(5544): 554.

doi: 10.1038/259554a0     URL    
[3]
Frank S N, Bard A J. Cheminform, 1977, 8: 303.
[4]
Xi Q Y, Liu J S, Wu Z Y, Bi H F, Li Z Q, Zhu K J, Zhuang J J, Chen J X, Lu S L, Huang Y F, Qian G M. Appl. Surf. Sci., 2019, 480: 427.

doi: 10.1016/j.apsusc.2019.03.009     URL    
[5]
Sheng B B, Liu J S, Li Z Q, Wang M H, Zhu K J, Qiu J H, Wang J. Mater. Lett., 2015, 144: 153.

doi: 10.1016/j.matlet.2015.01.056     URL    
[6]
Liu W W, Qiao L L, Zhu A Q, Liu Y, Pan J. Appl. Surf. Sci., 2017, 426: 897.

doi: 10.1016/j.apsusc.2017.07.225     URL    
[7]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.v29.20     URL    
[8]
Gou X L, Cheng F Y, Shi Y H, Zhang L, Peng S J, Chen J, Shen P W. J. Am. Chem. Soc., 2006, 128(22): 7222.

doi: 10.1021/ja0580845     URL    
[9]
Hu X L, Yu J C, Gong J M, Li Q. Cryst. Growth Des., 2007, 7(12): 2444.

doi: 10.1021/cg060767o     URL    
[10]
Pan Y, Yuan X Z, Jiang L B, Yu H B, Zhang J, Wang H, Guan R P, Zeng G M. Chem. Eng. J., 2018, 354: 407.

doi: 10.1016/j.cej.2018.08.028     URL    
[11]
Pouretedal H R, Norozi A, Keshavarz M H, Semnani A. J. Hazard. Mater., 2009, 1622-3: 674.
[12]
Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110(11): 6503.

doi: 10.1021/cr1001645     URL    
[13]
Ding K N, Li Y L, Chen B, Zhang Y F. J. Phys. Soc. Jpn., 2014, 83(7): 074301.

doi: 10.7566/JPSJ.83.074301     URL    
[14]
Shen S H, Zhao L, Guo L J. J. Phys. Chem. Solids, 2008, 69(10): 2426.

doi: 10.1016/j.jpcs.2008.04.035     URL    
[15]
Du C, Zhang Q, Lin Z Y, Yan B, Xia C X, Yang G W. Appl. Catal. B: Environ., 2019, 248: 193.

doi: 10.1016/j.apcatb.2019.02.027     URL    
[16]
Shi X W, Mao L, Yang P, Zheng H J, Fujitsuka M, Zhang J Y, Majima T. Appl. Catal. B: Environ., 2020, 265: 118616.

doi: 10.1016/j.apcatb.2020.118616     URL    
[17]
Thakur S, Das P, Mandal S K. ACS Appl. Nano Mater., 2020, 3(6): 5645.

doi: 10.1021/acsanm.0c00868     URL    
[18]
Fu H, Tang A W. J. Semicond., 2020, 41(9): 091706.

doi: 10.1088/1674-4926/41/9/091706     URL    
[19]
Aazam E S. J. Ind. Eng. Chem., 2014, 20(6): 4008.

doi: 10.1016/j.jiec.2013.12.104     URL    
[20]
Chen W P, Liu J D, An J J, Wang L, Zhu Y, Sillanpää M. J. Photochem. Photobiol. A-Chem., 2018, 364: 732.

doi: 10.1016/j.jphotochem.2018.07.008     URL    
[21]
Mohamed R M, Shawky A, Aljahdali M S. J. Taiwan Inst. Chem. Eng., 2016, 65: 498.

doi: 10.1016/j.jtice.2016.05.027     URL    
[22]
Liu Q, Lu H, Shi Z W, Wu F L, Guo J, Deng K M, Li L. ACS Appl. Mater. Interfaces, 2014, 6(19): 17200.

doi: 10.1021/am505015j     URL    
[23]
Peng S J, Wu Y Z, Zhu P N, Thavasi V, Ramakrishna S, Mhaisalkar S G. J. Mater. Chem., 2011, 21(39): 15718.

doi: 10.1039/c1jm12432c     URL    
[24]
Kale S B, Kalubarme R S, Mahadadalkar M A, Jadhav H S, Bhirud A P, Ambekar J D, Park C J, Kale B B. Phys. Chem. Chem. Phys., 2015, 17(47): 31850.

doi: 10.1039/C5CP05546F     URL    
[25]
Zhang B H, Wang H, Xi J J, Zhao F Q, Zeng B Z. Sens. Actuat. B: Chem., 2019, 298: 126835.

doi: 10.1016/j.snb.2019.126835     URL    
[26]
Chai B, Peng T Y, Zeng P, Zhang X H, Liu X J. J. Phys. Chem. C, 2011, 115(13): 6149.

doi: 10.1021/jp1112729     URL    
[27]
Shi L, Yin P Q, Dai Y M. Langmuir, 2013, 29(41): 12818.

doi: 10.1021/la402473k     URL    
[28]
Chen J S, Xin F, Yin X H, Xiang T, Wang Y W. RSC Adv., 2015, 5(5): 3833.

doi: 10.1039/C4RA13191F     URL    
[29]
Zhang S Q, Liu X, Liu C B, Luo S L, Liu Y T. ACS Nano, 2017, 12: 751.

doi: 10.1021/acsnano.7b07974     URL    
[30]
Wang G, Chen G, Yu Y G, Zhou X, Teng Y J. RSC Adv., 2013, 3(40): 18579.

doi: 10.1039/c3ra42245c     URL    
[31]
Sabet M, Salavati-Niasari M, Esmaeili E. J. Inorg. Organomet. Polym. Mater., 2016, 26(4): 738.

doi: 10.1007/s10904-016-0374-y     URL    
[32]
Zhong J S, Wang Q Y, Cai W. Mater. Lett., 2015, 150: 69.

doi: 10.1016/j.matlet.2015.03.006     URL    
[33]
Chumha N, Thongtem T, Thongtem S, Kittiwachana S, Kaowphong S. Appl. Surf. Sci., 2018, 447: 292.

doi: 10.1016/j.apsusc.2018.03.210     URL    
[34]
Pudkon W, Kaowphong S, Pattisson S, Miedziak P J, Bahruji H, Davies T E, Morgan D J, Hutchings G J. Catal. Sci. Technol., 2019, 9(20): 5698.

doi: 10.1039/C9CY01553A     URL    
[35]
Ding S P, Liu X F, Shi Y Q, Liu Y, Zhou T F, Guo Z P, Hu J C. ACS Appl. Mater. Interfaces, 2018, 10(21): 17911.

doi: 10.1021/acsami.8b02955     URL    
[36]
Chaudhari N S, Bhirud A P, Sonawane R S, Nikam L K, Warule S S, Rane V H, Kale B B. Green Chem., 2011, 13(9): 2500.

doi: 10.1039/c1gc15515f     URL    
[37]
Zhu Q, Sun Y K, Xu S, Li Y L, Lin X L, Qin Y L. J. Hazard. Mater., 2020, 382: 121098.

doi: S0304-3894(19)31052-0     pmid: 31479823
[38]
Bo L L, Liu H, Han H X. J. Environ. Manag., 2019, 241: 131.

doi: 10.1016/j.jenvman.2019.03.132     URL    
[39]
Li M, Qiu J H, Yang L, Feng Y, Yao J F. Mater. Res. Bull., 2020, 122: 110671.

doi: 10.1016/j.materresbull.2019.110671     URL    
[40]
Yang G, Chen D M, Ding H, Feng J J, Zhang J Z, Zhu Y F, Hamid S, Bahnemann D W. Appl. Catal. B: Environ., 2017, 219: 611.

doi: 10.1016/j.apcatb.2017.08.016     URL    
[41]
Ding Y, Wei D Q, He R, Yuan R S, Xie T F, Li Z H. Appl. Catal. B: Environ., 2019, 258: 117948.

doi: 10.1016/j.apcatb.2019.117948     URL    
[42]
Tan P F, Zhu A Q, Qiao L L, Zeng W X, Ma Y J, Dong H G, Xie J P, Pan J. Inorg. Chem. Front., 2019, 6(4): 929.

doi: 10.1039/C8QI01359D     URL    
[43]
Wang S B, Guan B Y, Lou X W D. J. Am. Chem. Soc., 2018, 140(15): 5037.

doi: 10.1021/jacs.8b02200     URL    
[44]
Yuan D L, Sun M T, Tang S F, Zhang Y T, Wang Z T, Qi J B, Rao Y D, Zhang Q R. Chin. Chem. Lett., 2020, 31(2): 547.

doi: 10.1016/j.cclet.2019.09.051     URL    
[45]
Jo W K, Lee J Y, Natarajan T S. Phys. Chem. Chem. Phys., 2016, 18(2): 1000.

doi: 10.1039/C5CP06176H     URL    
[46]
Wan S P, Zhong Q, Ou M, Zhang S L. J. Mater. Sci., 2017, 52(19): 11453.

doi: 10.1007/s10853-017-1283-3     URL    
[47]
Yang C, Li Q, Xia Y, Lv K, Li M. Appl. Surf. Sci., 2019, 464: 388.

doi: 10.1016/j.apsusc.2018.09.099     URL    
[48]
Khan A, Danish M, Alam U, Zafar S, Muneer M. ACS Omega, 2020, 5(14): 8188.

doi: 10.1021/acsomega.0c00446     URL    
[49]
Xiao Y, Peng Z Y, Zhang W L, Jiang Y H, Ni L. Appl. Surf. Sci., 2019, 494: 519.

doi: 10.1016/j.apsusc.2019.07.175    
[50]
Hao M M, Deng X Y, Xu L Z, Li Z H. Appl. Catal. B: Environ., 2019, 252: 18.

doi: 10.1016/j.apcatb.2019.04.002     URL    
[51]
Lim W Y, Hong M H, Ho G W. Dalton Trans., 2016, 45(2): 552.

doi: 10.1039/C5DT03775A     URL    
[52]
Chen G P, Ding N, Li F, Fan Y Z, Luo Y H, Li D M, Meng Q B. Appl. Catal. B: Environ., 2014, 160-161: 614.
[53]
Liu C, Chai B, Wang C L, Yan J T, Ren Z D. Int. J. Hydrog. Energy, 2018, 43(14): 6977.

doi: 10.1016/j.ijhydene.2018.02.116     URL    
[54]
Chai B, Liu C, Wang C L, Yan J T, Ren Z D. Chin. J. Catal., 2017, 38(12): 2067.

doi: 10.1016/S1872-2067(17)62981-4     URL    
[55]
Huang L X, Han B, Huang X H, Liang S J, Deng H. J. Alloy. Compd., 2019, 798: 553.

doi: 10.1016/j.jallcom.2019.05.162     URL    
[56]
Wei L, Chen Y J, Zhao J L, Li Z H. Beilstein J. Nanotechnol., 2013, 4: 949.

doi: 10.3762/bjnano.4.107     URL    
[57]
Yan A H, Shi X W, Huang F, Fujitsuka M, Majima T. Appl. Catal. B: Environ., 2019, 250: 163.

doi: 10.1016/j.apcatb.2019.02.075     URL    
[58]
Chen W, Yan R Q, Chen G H, Chen M Y, Huang G B, Liu X H. Ceram. Int., 2019, 45(2): 1803.

doi: 10.1016/j.ceramint.2018.10.067    
[59]
Zhang G P, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Appl. Catal. B-Environ., 2018, 232: 164.

doi: 10.1016/j.apcatb.2018.03.017     URL    
[60]
Wang H, Ye H L, Zhang B H, Zhao F Q, Zeng B Z. J. Phys. Chem. C, 2018, 122(35): 20329.

doi: 10.1021/acs.jpcc.8b05287     URL    
[61]
Zhou J B, Chen D, Bai L Q, Qin L S, Sun X G, Huang Y X. Int. J. Hydrog. Energy, 2018, 43(39): 18261.

doi: 10.1016/j.ijhydene.2018.08.071     URL    
[62]
Xiong M H, Chai B, Yan J T, Fan G Z, Song G S. Appl. Surf. Sci., 2020, 514: 145965.

doi: 10.1016/j.apsusc.2020.145965     URL    
[63]
Chachvalvutikul A, Pudkon W, Luangwanta T, Thongtem T, Thongtem S, Kittiwachana S, Kaowphong S. Mater. Res. Bull., 2019, 111: 53.

doi: 10.1016/j.materresbull.2018.10.034    
[64]
Wang S B, Guan B Y, Wang X, Lou X W D. J. Am. Chem. Soc., 2018, 140(45): 15145.

doi: 10.1021/jacs.8b07721     URL    
[65]
Guan Z J, Xu Z Q, Li Q Y, Wang P, Li G Q, Yang J J. Appl. Catal. B: Environ., 2018, 227: 512.

doi: 10.1016/j.apcatb.2018.01.068     URL    
[66]
Guan Z J, Pan J W, Li Q Y, Li G Q, Yang J J. ACS Sustainable Chem. Eng., 2019, 7(8): 7736.

doi: 10.1021/acssuschemeng.8b06587     URL    
[67]
Xu L Z, Deng X Y, Li Z H. Appl. Catal. B: Environ., 2018, 234: 50.

doi: 10.1016/j.apcatb.2018.04.030     URL    
[68]
Pan J W, Guan Z J, Yang J J, Li Q Y. Chin. J. Catal., 2020, 41(1): 200.

doi: 10.1016/S1872-2067(19)63422-4     URL    
[69]
Ding N, Zhang L S, Zhang H Y, Shi J J, Wu H J, Luo Y H, Li D M, Meng Q B. Catal. Commun., 2017, 100: 173.

doi: 10.1016/j.catcom.2017.06.050     URL    
[70]
Liu H, Jin Z T, Xu Z Z, Zhang Z, Ao D. RSC Adv., 2015, 5(119): 97951.

doi: 10.1039/C5RA17028A     URL    
[71]
Guo F, Cai Y, Guan W S, Huang H, Liu Y. J. Phys. Chem. Solids, 2017, 110: 370.

doi: 10.1016/j.jpcs.2017.07.001     URL    
[72]
Zhou M, Wang S B, Yang P J, Luo Z S, Yuan R S, Asiri A M, Wakeel M, Wang X C. Chem. Eur. J., 2018, 24(69): 18529.

doi: 10.1002/chem.v24.69     URL    
[73]
Mao S M, Shi J W, Sun G T, Ma D D, He C, Pu Z X, Song K L, Cheng Y H. Appl. Catal. B: Environ., 2021, 282: 119550.

doi: 10.1016/j.apcatb.2020.119550     URL    
[74]
Yuan R R, Qiu J L, Yue C L, Shen C, Li D W, Zhu C Q, Liu F Q, Li A M. Chem. Eng. J., 2020, 401: 126020.

doi: 10.1016/j.cej.2020.126020     URL    
[75]
Chang H, Wu H, Yang Y T, Xie L D, Zhang Y. Int. J. Hydrog. Energy, 2020, 45: 30571.

doi: 10.1016/j.ijhydene.2020.08.115     URL    
[76]
Liu H, Zhang J, Ao D. Appl. Catal. B: Environ., 2018, 221: 433.

doi: 10.1016/j.apcatb.2017.09.043     URL    
[77]
Chen S H, Zhao X L, Xie F Z, Tang Z, Wang X F. New J. Chem., 2020, 44(18): 7350.

doi: 10.1039/D0NJ01102A     URL    
[78]
Li X L, Wang X J, Zhu J Y, Li Y P, Zhao J, Li F T. Chem. Eng. J., 2018, 353: 15.

doi: 10.1016/j.cej.2018.07.107     URL    
[79]
Zeng D Q, Xiao L, Ong W J, Wu P Y, Zheng H F, Chen Y Z, Peng D L. ChemSusChem, 2017, 10(22): 4624.

doi: 10.1002/cssc.201701345     URL    
[80]
Yang Z F, Shao L H, Wang L L, Xia X N, Liu Y T, Cheng S, Yang C, Li S J. Int. J. Hydrog. Energy, 2020, 45(28): 14334.

doi: 10.1016/j.ijhydene.2020.03.139     URL    
[81]
Guo L, Han X X, Zhang K L, Zhang Y Y, Zhao Q, Wang D J, Fu F. Catalysts, 2019, 9(9): 729.

doi: 10.3390/catal9090729     URL    
[82]
Yang H C, Cao R Y, Sun P X, Yin J M, Zhang S W, Xu X J. Appl. Catal. B: Environ., 2019, 256: 117862.

doi: 10.1016/j.apcatb.2019.117862     URL    
[83]
Qiu B C, Zhu Q H, Du M M, Fan L G, Xing M Y, Zhang J L. Angew. Chem. Int. Ed., 2017, 56(10): 2684.

doi: 10.1002/anie.201612551     URL    
[84]
Li H, Chen Z H, Zhao L, Yang G D. Rare Metals, 2019, 38: 1.

doi: 10.1007/s12598-018-1164-1     URL    
[85]
Jiang Y H, Peng Z Y, Zhang S B, Li F, Liu Z C, Zhang J M, Liu Y, Wang K. Ceram. Int., 2018, 44(6): 6115.

doi: 10.1016/j.ceramint.2017.12.244     URL    
[86]
Zhang Z Z, Huang L, Zhang J J, Wang F J, Xie Y Y, Shang X T, Gu Y Y, Zhao H B, Wang X X. Appl. Catal. B: Environ., 2018, 233: 112.

doi: 10.1016/j.apcatb.2018.04.006     URL    
[87]
Swain G, Sultana S, Parida K. Inorg. Chem., 2019, 58(15): 9941.

doi: 10.1021/acs.inorgchem.9b01105     URL    
[88]
Wang X L, Li Y Y, Li Z H. Chin. J. Catal., 2021, 42(3): 409.

doi: 10.1016/S1872-2067(20)63660-9     URL    
[89]
Sun M, Zhao X, Zeng Q, Yan T, Ji P G, Wu T T, Wei D, Du B. Appl. Surf. Sci., 2017, 407: 328.

doi: 10.1016/j.apsusc.2017.02.181     URL    
[90]
Suebsom P, Phuruangrat A, Suwanboon S, Thongtem S, Thongtem T. Inorg. Chem. Commun., 2020, 119: 108120.

doi: 10.1016/j.inoche.2020.108120     URL    
[91]
Veziroglu S, Obermann A L, Ullrich M, Hussain M, Kamp M, Kienle L, Leißner T, Rubahn H G, Polonskyi O, Strunskus T, Fiutowski J, Es-Souni M, Adam J, Faupel F, Aktas O C. ACS Appl. Mater. Interfaces, 2020, 12(13): 14983.

doi: 10.1021/acsami.9b18817     URL    
[92]
Yao G Y, Liu Q L, Zhao Z Y. Prog. Chem., 2019, 31(4): 516.
( 姚国英, 刘清路, 赵宗彦. 化学进展, 2019, 31(4): 516.)

doi: 10.7536/PC180810    
[93]
Wang Z P, Ye X Y, Chen L, Huang P J, Chen S. Mater. Sci. Semicond. Process, 2021, 121: 105354.

doi: 10.1016/j.mssp.2020.105354     URL    
[94]
Zhang D, Tan G Q, Wang M, Li B, Dang M Y, Ren H J, Xia A. Appl. Surf. Sci., 2020, 526: 146689.

doi: 10.1016/j.apsusc.2020.146689     URL    
[95]
Zhu T T, Ye X J, Zhang Q Q, Hui Z Z, Wang X C, Chen S F. J. Hazard. Mater., 2019, 367: 277.

doi: 10.1016/j.jhazmat.2018.12.093     URL    
[96]
Mandal S, Adhikari S, Pu S Y, Ma H, Kim D H. Appl. Surf. Sci., 2019, 498: 143840.

doi: 10.1016/j.apsusc.2019.143840     URL    
[97]
Wang B Q, Deng Z R, Fu X Z, Xu C, Li Z H. Appl. Catal. B: Environ., 2018, 237: 970.

doi: 10.1016/j.apcatb.2018.06.067     URL    
[98]
Feng C J, Yang X L, Sun Z L, Xue J, Sun L R, Wang J H, He Z L, Yu J Q. Appl. Surf. Sci., 2020, 501: 144018.

doi: 10.1016/j.apsusc.2019.144018     URL    
[99]
Lei K, Kou M P, Ma Z Y, Deng Y, Ye L Q, Kong Y. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 574: 105.

doi: 10.1016/j.colsurfa.2019.04.073     URL    
[100]
Xu H Q, Jiang Y H, Yang X Y, Li F, Li A P, Liu Y, Zhang J M, Zhou Z Z, Ni L. Mater. Res. Bull., 2018, 97: 158.

doi: 10.1016/j.materresbull.2017.09.004     URL    
[101]
Shi W L, Lv H, Yuan S L, Huang H, Liu Y, Kang Z H. Sep. Purif. Technol., 2017, 174: 282.

doi: 10.1016/j.seppur.2016.11.013     URL    
[102]
Yuan L, Yang M Q, Xu Y J. J. Mater. Chem. A, 2014, 2(35): 14401.

doi: 10.1039/C4TA02670E     URL    
[103]
Tian F, Zhu R S, Zhong J, Wang P, Ouyang F, Cao G. Int. J. Hydrog. Energy, 2016, 41(44): 20156.

doi: 10.1016/j.ijhydene.2016.08.063     URL    
[104]
Ye L, Fu J L, Xu Z, Yuan R S, Li Z H. ACS Appl. Mater. Interfaces, 2014, 6(5): 3483.

doi: 10.1021/am5004415     URL    
[105]
Zhang S Q, Wang L L, Liu C B, Luo J M, Crittenden J, Liu X, Cai T, Yuan J L, Pei Y, Liu Y T. Water Res., 2017, 121: 11.

doi: 10.1016/j.watres.2017.05.013     URL    
[106]
Tan C W, Zhu G Q, Hojamberdiev M, Lokesh K S, Luo X C, Jin L, Zhou J P, Liu P. J. Hazard. Mater., 2014, 278: 572.

doi: 10.1016/j.jhazmat.2014.06.019     URL    
[107]
Shen S H, Zhao L, Guan X J, Guo L J. J. Phys. Chem. Solids, 2012, 73(1): 79.

doi: 10.1016/j.jpcs.2011.09.027     URL    
[108]
Wang M, Li L H, Lu J M, Luo N C, Zhang X C, Wang F. Green Chem., 2017, 19(21): 5172.

doi: 10.1039/C7GC01728F     URL    
[109]
Yuan Y J, Chen D Q, Zhong J S, Yang L X, Zou Z G. J. Mater. Chem. A, 2017, 5: 15771.

doi: 10.1039/C7TA04410K     URL    
[110]
Shen S H, Zhao L, Zhou Z H, Guo L J. J. Phys. Chem. C, 2008, 112(41): 16148.

doi: 10.1021/jp804525q     URL    
[111]
Jing D W, Liu M C, Guo L J. Catal. Lett., 2010, 1403-4: 167.
[112]
Yang W L, Zhang L, Xie J F, Zhang X D, Liu Q H, Yao T, Wei S Q, Zhang Q, Xie Y. Angew. Chem., 2016, 128(23): 6828.

doi: 10.1002/ange.201602543     URL    
[113]
Wang B Q, Deng Z R, Fu X Z, Li Z H. J. Mater. Chem. A, 2018, 6(40): 19735.

doi: 10.1039/C8TA07797E     URL    
[114]
Wang B Q, Ding Y, Deng Z R, Li Z H. Chin. J. Catal., 2019, 40(3): 335.

doi: 10.1016/S1872-2067(18)63159-6     URL    
[115]
Zhu R S, Tian F, Yang R J, He J S, Zhong J, Chen B Y. Renew. Energy, 2019, 139: 22.

doi: 10.1016/j.renene.2019.02.049     URL    
[116]
Savić T D,., Carević M V, Mitrić M N, Kuljanin-Jakovljević J Ž, Abazović N D, ćomor M I. J. Photochem. Photobiol. A: Chem., 2020, 388: 112154.

doi: 10.1016/j.jphotochem.2019.112154     URL    
[117]
Wang A L, Chen L, Zhang J X, Sun W C, Guo P, Ren C Y. J. Mater. Sci., 2017, 52(5): 2413.

doi: 10.1007/s10853-016-0535-y     URL    
[118]
Liu T T, Wang L, Sun C X, Liu X, Miao R, Lv Y. Chem. Eng. J., 2019, 358: 1296.

doi: 10.1016/j.cej.2018.10.107     URL    
[119]
Lu C Y, Guo F, Yan Q Z, Zhang Z J, Li D, Wang L P, Zhou Y H. J. Alloy. Compd., 2019, 811: 151976.

doi: 10.1016/j.jallcom.2019.151976     URL    
[120]
Ibtissem B A, Mounir G M, Jamila B N J, Abdullah A M, Lafy A O A, Taher G, Taher, Shouwen S, Radhouane C. Appl. Surf. Sci., 2015, 351: 927.

doi: 10.1016/j.apsusc.2015.06.038     URL    
[121]
Jiang R R, Wu D H, Lu G H, Yan Z H, Liu J C. Chemosphere, 2019, 227: 82.

doi: 10.1016/j.chemosphere.2019.04.038     URL    
[122]
Guo F, Cai Y, Guan W S, Shi W D. Mater. Lett., 2017, 201: 62.

doi: 10.1016/j.matlet.2017.04.142     URL    
[123]
Chen W, Chang L, Ren S B, He Z C, Huang G B, Liu X H. J. Hazard. Mater., 2020, 384: 121308.

doi: S0304-3894(19)31262-2     pmid: 31585292
[124]
Hou Y D, Liu J S, Li Z Q, Wu Z Y, Zhu K J, Xi Q Y, Zhuang J J, Chen J X, Qian G M, Cong M Q. Mater. Lett., 2018, 218: 110.

doi: 10.1016/j.matlet.2018.01.140     URL    
[125]
Feng B, Wu Z Y, Liu J S, Zhu K J, Li Z Q, Jin X, Hou Y D, Xi Q Y, Cong M Q, Liu P C, Gu Q L. Appl. Catal. B: Environ., 2017, 206: 242.

doi: 10.1016/j.apcatb.2017.01.029     URL    
[126]
Zhuang J J, Liu J S, Wu Z Y, Li Z Q, Zhu K J, Yan K, Xu Y, Huang Y F, Lin Z X. J. Mater. Sci.: Mater. Electron., 2019, 30(12): 11368.
[127]
Tang M L, Ao Y H, Wang P F, Wang C. J. Hazard. Mater., 2020, 387: 121713.

doi: 10.1016/j.jhazmat.2019.121713     URL    
[128]
Chen W, Liu T Y, Huang T, Liu X H, Yang X J. Nanoscale, 2016, 8(6): 3711.

doi: 10.1039/c5nr07695a     pmid: 26815611
[129]
Xu Y. Doctoral Dissertation of South China University of Technology,2015.(徐垚. 华南理工大学博士论文, 2015.).
[130]
Mahadik M A, Shinde P S, Cho M, Jang J S. Appl. Catal. B: Environ., 2016, 184: 337.

doi: 10.1016/j.apcatb.2015.12.001     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[12] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[13] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[14] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[15] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.