中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1947-1956 DOI: 10.7536/PC211125 Previous Articles   Next Articles

• Review •

Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application

Xu Zhang1,2, Lei Zhang1, Shanen Huang1,3, Zhifang Chai1, Weiqun Shi4()   

  1. 1 Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 College of Nuclear Science and Technology, Harbin Engineering University,Harbin 150001, China
    3 School of Energy and Power Engineering, Xi’an Jiaotong University,Xi’an 710049, China
    4 Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: shiwq@ihep.ac.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    National Science Foundation for Distinguished Young Scholars(21925603); Major Program of the National Natural Science Foundation of China(21790373); National Natural Science Foundation of China(U20B2020)
Richhtml ( 22 ) PDF ( 574 ) Cited
Export

EndNote

Ris

BibTeX

Salt-inclusion materials (SIMs), novel crystal materials with a unique host structure and guest salt inclusion, are of great interest to researchers due to their excellent porous, packable and flexible structure. The synthesis of SIMs is very challenging, as most of them are obtained serendipitously. To develop these materials for further application, it is important to understand their crystal chemistry, synthesis mechanism and relevant properties. In this work, we review typical SIMs synthesized in high-temperature molten salt system in recent years, classify them by their crystal frameworks, discuss some SIMs with unique structures and summarize their characteristics. This paper also introduces the potential application of SIMs in the environmental, photoelectric, thermoelectric and fluorescence fields. For the future development of SIMs, further investigation of their crystal chemistry is still needed to explore their applications

Contents

1 Introduction

2 Characteristics of molten salt method

3 The structure of salt-inclusion materials

3.1 Silicates-based SIMs

3.2 Germanates-based SIMs

3.3 Phosphates-based SIMs

3.4 Vanadates-based SIMs

3.5 Borates-based SIMs

3.6 Salt-inclusion chalcogenide

4 Potential applications of the SIMs

5 Conclusion and outlook

Table 1 Structures and synthesis conditions of some SIMs
Number Compounds Flux Reagents Reaction temperature and time Cooling rate Space group Vcell3 ) ref
1 Ba6Mn4Si12O34Cl3 BaCl2/NaCl BaO, BaCl2, MnO, SiO2 1000℃, 6 days N/A Pmc21 864.4(3) 45
2 Ba6Fe5Si11O34Cl3 BaCl2/NaCl BaO, BaCl2, Fe2O3, SiO2 1000℃, 6 days N/A Pmc21 870.6(3) 45
3 Ba2Mn(Si2O7)Cl BaCl2/NaCl BaO, BaCl2, Mn2O3, SiO2 900℃, 6 days 6℃/h (300℃) P4bm 389.8(1) 46
4 Ba4(BO3)3(SiO4)·Ba3Cl Na2O/H3BO3 BaCl2, SiO2 850℃, 20 h 2℃/h (630℃) P63mc 788.3(8) 47
5 Ba4(BO3)3(SiO4)·Ba3Br NaBr/H3BO3 BaCO3, SiO2 900℃, 20 h 2℃/h (735℃) P63mc 806.9(5) 47
6 [Cs8Cs8Cl1.4F0.6][(TiO)4(Ti6Si14O51)] CsCl/CsF UF4, SiO2, TiO2 900℃, 12 h 6℃/h (400℃) Cmmm 3577.69(12) 48
7 [NaK6F][(UO2)3(Si2O7)2] KF/NaF U3O8, SiO2 900℃, 24 h 6℃/h (600℃) Pnnm 1139.71(9) 49
8 [KK6Cl][(UO2)3(Si2O7)2] KF/KCl U3O8, SiO2 900℃, 24 h 6℃/h (600℃) Pnnm 1184.82(11) 49
9 [Cs3F][(UO2)(Si4O10)] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) Imma 1542.68(7) 50
10 [Cs2Cs5F][(UO2)3(Si2O7)2] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) P21/n 1382.41(17) 50
11 [Cs2Cs5F][(UO2)2(Si6O17)] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) P21212 1436.05(8) 50
12 [Cs9Cs6Cl][(UO2)7(Si6O17)2(Si4O12)] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) P-1 1890.08(10) 50
13 [KK6Cl][(UO2)3(Ge2O7)2] KF/KCl UF4, GeO2 875℃, 12 h 6℃/h (400℃) Pnnm 1257.44(10) 26
14 [Cs6Cs0.71Cl0.71][(UO2)3O3(Ge2O7)] CsCl UF4, GeO2 875℃, 12 h 6℃/h (400℃) P63/m 1294.4(2) 26
15 K2Cs3Cu3(P2O7)2Cl3 CsCl KMnO4, CuO, P2O5 650℃, 48 h
800℃, 12 h
3℃/h (500℃) P4/nbm 4197.8(9) 51
16 Na2Cs2Cu3(P2O7)2Cl2 CsCl Na2O, CuO, P2O5 750℃, 5 days 6℃/h (400℃) P42/mnm 3333.1(8) 52
17 Na2Mn3(P2O7)2·RbCl RbCl/NaCl MnO, P4O10 750℃, 12 h 6℃/h (350℃) C2/c 1337.2(6) 35
18 K2Mn3(P2O7)2·CsCl CsCl/KCl MnO, P4O10 750℃, 12 h 6℃/h (350℃) P2/c 764.1(3) 35
19 K2Fe3(P2O7)2·CsCl CsCl/KCl FeO, P4O10 750℃, 12 h 6℃/h (350℃) P-1 372.76(13) 35
20 (CsCl)Mn(V2O7) CsCl/NaCl MnO, V2O5 650℃, 4 days 6℃/h (450℃) Pma2 38.8(2) 31
21 Cs5FeV5O13Cl6 CsCl/NaCl Fe2O3, V2O5 650℃, 3 h
600℃, 48 h
6℃/h (480℃) P4/nmm 1261.5(8) 30
22 Cs11Na3(V15O36)Cl6 CsCl/NaCl MnO, V2O5 650℃, 4 days 6℃/h (450℃) P-1m2 1388.3(7) 31
23 [Li3Ca9(BO3)7]·2[LiF] LiF Li2CO3, CaO, H3BO3 850℃, 20 h
600℃, 48 h
2℃/h (650℃),10℃/min to room temperature P1 511.69(16) 38
24 (Cs6Cl)6Cs3[Ga53Se96] CsCl Mn, Ga, Se 1000℃, 4 days 3℃/h (300℃) I-4 1042.04(2) 40
25 [Ba4Cl2][ZnGa4S10] Ba2Cl Ba, Ga, S, ZnS 1050℃, 60 h 2.5℃/h (300℃) R-3m 6226.5(6) 42
26 Li[LiCs2Cl][Ga3S6] CsCl Li, Ba, Ga, S 950℃, 96 h 5.7℃/h (400℃) Pna21 1333.1(1) 2
27 Ba7B3SiO13Br H3BO3 SiO2, Dy2O3, NH4Br 1200℃, 96 h natural cooling to
room temperature
P63mc 806.9(5) 53
Fig. 1 Perspective view of the mixed-metal network structure showing pseudo-one-dimensional channels. Dark gray: Ba, green: Cl[45]. Copyright 2005, American Chemical Society
Fig. 2 The schematic structure of [Cs8Cs8Cl1.4F0.6][(TiO)4(Ti6Si14O51)] (a) along the a-axis direction; (b) along the b-axis direction: 14 member ring; (c) along the b-axis direction: ionic salt[48]. Copyright 2020, American Chemical Society
Fig. 3 Crystal structure of (a) [NaK6F][(UO2)3(Si2O7)2]; (b) [Cs3F][(UO2)(Si4O10)]; (c) [Cs2Cs5F][(UO2)3(Si2O7)2]; (d) [Cs2Cs5F][(UO2)2(Si6O17)]; (e) [Cs9Cs6Cl][(UO2)7(Si6O17)2(Si4O12)][49,50]. Copyright 2020, American Chemical Society
Fig. 4 The structure of (a) [KK6Cl][(UO2)3(Ge2O7)2], (b) [Cs6Cs0.71Cl0.71][(UO2)3O3(Ge2O7)]. yellow and orange: U, gray : Ge, red : O, green : Cl, dark blue : Cs[26]. Copyright 2018, American Chemical Society
Fig. 5 Microporous structures of (a) CU-2 and (b) CU-4[52]. Copyright 2001, Wiley
Fig. 6 The structure of (a) Na2Mn3(P2O7)2·RbCl, (b) K2Mn3(P2O7)2·CsCl, (c) K2Fe3(P2O7)2·CsCl[35]. Copyright 2015, American Chemical Society
Fig. 7 The structure of (a) (CsCl)2Mn(VO3)2, (b) (CsCl)2Cu(VO3)2, (c) (CsCl)Mn(V2O7)[31], (d) Cs5FeV5O13Cl6[30]
Fig. 8 Schematic representation of the Cs11Na3(V15O36)Cl6 clusters[32]. Copyright 2011, American Chemical Society
Fig. 9 The structure representation of [Li3Ca9(BO3)7]·2[LiF][38]. Copyright 2013, American Chemical Society
Fig.10 (a) View of (Cs6Cl)6Cs3[Ga53Se96] along the b direction, (b) The cis-and trans-linking details of the Ga2Se6 dimer[40]. Copyright 2016, American Chemical Society
Fig.11 The structure representation of [Ba4Cl2][ZnGa4S10], pink: Ga4S10, blue: ZnS4, red: Cl, black: Ba[42]. Copyright 2020, American Chemical Society
Fig. 12 (a) The structure of Ba4(BO3)3(SiO4)·Ba3X, (b) Plot of particle size and SHG intensity[47]. Copyright 2014, the Royal Society of Chemistry
Fig. 13 (a) The crystal structure of Li[LiCs2Cl][Ga3S6]; (b) The UV-Visible-NIR absorption spectrum[2]. Copyright 2019, Wiley
Fig. 14 The crystal structure of Ba7B3SiO13Br[53]
Fig. 15 Thermal conductivity as a function of temperature for [Rb6Mn7Se44](RE=Ho-Yb)[7]. Copyright 2020, the Royal Society of Chemistry
[1]
Moore E E, Kocevski V, Juillerat C A, Morrison G, Zhao M Y, Brinkman K S, Loye H C Z, Besmann T M. Sci. Rep., 2018, 8: 15294.

doi: 10.1038/s41598-018-32903-3
[2]
Liu B W, Jiang X M, Li B X, Zeng H Y, Guo G C. Angew. Chem. Int. Ed., 2020, 59(12): 4856.

doi: 10.1002/anie.201912416
[3]
Wang Y, Coordin Chemy Rev., 2016, 323: 15.
[4]
West J P, Hwu S J. J. Solid State Chem., 2012, 195: 101.

doi: 10.1016/j.jssc.2012.06.015
[5]
Usman M, Kocevski V, Smith M D, Morrison G, Zhang W G, Besmann T, Halasyamani P S, zur Loye H C. Inorg. Chem., 2020, 59(14): 9699.

doi: 10.1021/acs.inorgchem.0c00936
[6]
Liu B W, Jiang X M, Zeng H Y, Guo G C. J. Am. Chem. Soc., 2020, 142(24): 10641.

doi: 10.1021/jacs.0c04738
[7]
Chen H, Liu P F, Lin H, Wu X T. Chem. Commun., 2020, 56(96): 15149.

doi: 10.1039/D0CC06306A
[8]
Chang Y C, Chang W J, Boudin S, Lii K H. Inorg. Chem., 2013, 52(12): 7230.

doi: 10.1021/ic400854j
[9]
Sadakiyo M, Kasai H, Kato K, Takata M, Yamauchi M. J. Am. Chem. Soc., 2014, 136(5): 1702.

doi: 10.1021/ja410368j pmid: 24422498
[10]
Morrison G, Tran T T, Halasyamani P S, zur Loye H C. Inorg. Chem., 2016, 55(7): 3215.

doi: 10.1021/acs.inorgchem.6b00242 pmid: 26974872
[11]
Charkin D O, Black C, Downie L J, Sklovsky D E, Berdonosov P S, Olenev A V, Zhou W Z, Lightfoot P, Dolgikh V A. J. Solid State Chem., 2015, 232: 56.

doi: 10.1016/j.jssc.2015.08.043
[12]
Tasi J M, Tu P T, Chan T S, Lii K H. Inorg. Chem., 2008, 47(23): 11223.

doi: 10.1021/ic801525d
[13]
Duan M H, Kong B, Yang X K, Li Y X, Ma P X, An X Y, Zeng T X, Qin D B, Fang Z. Inorg. Chem., 2021, 60(12): 8451.

doi: 10.1021/acs.inorgchem.1c01015
[14]
Levitas B, Liu Z Y, Piligian S, Kakinuma K, Gopalan S. Cryst. Growth Des., 2021, 21(5): 2581.

doi: 10.1021/acs.cgd.0c01249
[15]
Gilbert M R. Ceram. Int., 2016, 42(4): 5263.

doi: 10.1016/j.ceramint.2015.12.054
[16]
Huang Q, Hwu S J. Inorg. Chem., 2003, 42(3): 655.

pmid: 12562173
[17]
Queen W L, Hwu S J, Reighard S. Inorg. Chem., 2010, 49(4): 1316.

doi: 10.1021/ic902283g
[18]
Yoon K H, Cho Y S, Kang D H. J. Mater. Sci., 1998, 33(12): 2977.

doi: 10.1023/A:1004310931643
[19]
Willert M, Rothe R, Landfester K, Antonietti M. Chem. Mater., 2001, 13(12): 4681.

doi: 10.1021/cm011121g
[20]
Bugaris D E, Zur Loye H C. Angew. Chem. Int. Ed., 2012, 51(16): 3780.

doi: 10.1002/anie.201102676 pmid: 22287424
[21]
Lee C S, Wang S L, Chen Y H, Lii K H. Inorg. Chem., 2009, 48(17): 8357.

doi: 10.1021/ic901001n
[22]
Chang Y C, Chang W J, Boudin S, Lii K H. Inorg. Chem., 2013, 52(12): 7230.

doi: 10.1021/ic400854j
[23]
Tang M F, Chiang P Y, Su Y H, Jung Y C, Hou G Y, Chang B C, Lii K H. Inorg. Chem., 2008, 47(19): 8985.

doi: 10.1021/ic801007k
[24]
Dong L Y, Pan S L, Wang Y, Yu H W, Bian Q, Yang Z H, Wu H P, Zhang M. CrystEngComm, 2014, 16(27): 5993.

doi: 10.1039/C4CE00527A
[25]
Li H J, Langer E M, Kegler P, Modolo G, Alekseev E V. Inorg. Chem., 2018, 57(17): 11201.

doi: 10.1021/acs.inorgchem.8b01781
[26]
Juillerat C A, Moore E E, Morrison G, Smith M D, Besmann T, zur Loye H C. Inorg. Chem., 2018, 57(18): 11606.

doi: 10.1021/acs.inorgchem.8b01729
[27]
Spagnuolo N R, Morrison G, zur Loye H C. Solid State Sci., 2019, 97: 105973.

doi: 10.1016/j.solidstatesciences.2019.105973
[28]
Lin C H, Chiang R K, Lii K H. J. Am. Chem. Soc., 2009, 131(6): 2068.

doi: 10.1021/ja8084143 pmid: 19199624
[29]
Siidra O I, Nazarchuk E V, Agakhanov A A, Polekhovsky Y S. Mineral. Mag., 2019, 83(6): 847.

doi: 10.1180/mgm.2019.42
[30]
Mahjoor P, Latturner S E. Inorg. Chem., 2010, 49(10): 4486.

doi: 10.1021/ic902211c pmid: 20405835
[31]
Queen W, West J, Hwu S J, VanDerveer D, Zarzyczny M, Pavlick R. Angew. Chem. Int. Ed., 2008, 47(20): 3791.

doi: 10.1002/anie.200705113
[32]
Queen W L, West J P, Hudson J, Hwu S J. Inorg. Chem., 2011, 50(21): 11064.

doi: 10.1021/ic201605w
[33]
Winiarski M J, Tran T T, Chamorro J R, McQueen T M. Inorg. Chem., 2019, 58(7): 4328.

doi: 10.1021/acs.inorgchem.8b03464 pmid: 30855961
[34]
Juillerat C A, Klepov V V, Smith M D, zur Loye H C. CrystEngComm, 2020, 22(17): 3020.

doi: 10.1039/D0CE00343C
[35]
Gao J H, Li J, Sulejmanovic D, Hwu S J. Inorg. Chem., 2015, 54(3): 1136.

doi: 10.1021/ic5024696
[36]
Volkov S N, Charkin D O, Arsent’ev M Y, Povolotskiy A V, Stefanovich S Y, Ugolkov V L, Krzhizhanovskaya M G, Shilovskikh V V, Bubnova R S. Inorg. Chem., 2020, 59(5): 2655.

doi: 10.1021/acs.inorgchem.0c00306
[37]
Hu Z G, Yoshimura M, Mori Y, Sasaki T. J. Cryst. Growth, 2005, 275(1/2): 232.

doi: 10.1016/j.jcrysgro.2004.10.160
[38]
Yu H W, Wu H P, Pan S L, Wang Y, Yang Z H, Su X. Inorg. Chem., 2013, 52(9): 5359.

doi: 10.1021/ic4002779
[39]
Lin H, Li L H, Chen L. Inorg. Chem., 2012, 51(8): 4588.

doi: 10.1021/ic202494w
[40]
Lin H, Chen H, Lin Z X, Zhao H J, Liu P F, Yu J S, Chen L. Inorg. Chem., 2016, 55(3): 1014.

doi: 10.1021/acs.inorgchem.5b02846
[41]
Shi Y F, Li X F, Zhang Y X, Lin H, Ma Z J, Wu L M, Wu X T, Zhu Q L. Inorg. Chem., 2019, 58(10): 6588.

doi: 10.1021/acs.inorgchem.9b00653
[42]
Chen H, Li Y Y, Li B X, Liu P F, Lin H, Zhu Q L, Wu X T. Chem. Mater., 2020, 32(18): 8012.

doi: 10.1021/acs.chemmater.0c03008
[43]
Yue Q G, Wei W B, Chen H, Wu X T, Lin H, Zhu Q L. Dalton Trans., 2020, 49(41): 14338.

doi: 10.1039/D0DT02971H
[44]
Yu P, Zhou L J, Chen L. J. Am. Chem. Soc., 2012, 134(4): 2227.

doi: 10.1021/ja209711x
[45]
Mo X H, Ferguson E, Hwu S J. Inorg. Chem., 2005, 44(9): 3121.

doi: 10.1021/ic050228t
[46]
Mo X H, Hwu S J. Inorg. Chem., 2003, 42(13): 3978.

doi: 10.1021/ic0342245
[47]
Lin X X, Zhang F F, Pan S L, Yu H W, Zhang F Y, Dong X Y, Han S J, Dong L Y, Bai C Y, Wang Z. J. Mater. Chem. C, 2014, 2(21): 4257.

doi: 10.1039/c4tc00079j
[48]
Morrison G, zur Loye H C. Cryst. Growth Des., 2020, 20(12): 8071.

doi: 10.1021/acs.cgd.0c01317
[49]
Morrison G, zur Loye H C. Cryst. Growth Des., 2016, 16(3): 1294.

doi: 10.1021/acs.cgd.5b01408
[50]
Morrison G, Smith M D, zur Loye H C. J. Am. Chem. Soc., 2016, 138(22): 7121.

doi: 10.1021/jacs.6b03205 pmid: 27218856
[51]
Huang Q, Ulutagay M, Michener P A, Hwu S J. J. Am. Chem. Soc., 1999, 121(44): 10323.

doi: 10.1021/ja991768q
[52]
Huang Q, Hwu S J, Mo X H. Angew. Chem. Int. Ed., 2001, 40(9): 1690.

pmid: 11353481
[53]
Ju H D, Wang B L, Yang Q M. Key Eng. Mater., 2019, 803: 93.

doi: 10.4028/www.scientific.net/KEM.803.93
[54]
Zheng S T, Zhang J, Yang G Y. Angew. Chem. Int. Ed., 2008, 47(21): 3909.

doi: 10.1002/anie.200705709
[55]
Belokoneva E L, Dimitrova O V, Stefanovich S Y. Crystallogr. Rep., 2010, 55(4): 575.

doi: 10.1134/S1063774510040073
[56]
Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M, Luo H S. J. Am. Chem. Soc., 2011, 133(20): 7786.

doi: 10.1021/ja111083x
[57]
Chen C, Lu J, Opt lett., 2002, 27: 637.

doi: 10.1364/OL.27.000637
[58]
Fan X, Pan S, Hou X, Tian X, Han J, Cryst Growth Des., 2009, 10: 252.

doi: 10.1021/cg900877h
[59]
Kang L, Zhou M L, Yao J Y, Lin Z S, Wu Y C, Chen C T. J. Am. Chem. Soc., 2015, 137(40): 13049.

doi: 10.1021/jacs.5b07920 pmid: 26397313
[60]
Wang S A, Alekseev E, Ling J, Skanthakumar S, Soderholm L, Depmeier W, Albrecht-Schmitt T. Angewandte Chemie Int. Ed., 2010, 49(7): 1263.

doi: 10.1002/anie.200906127
[61]
Shi W Q, Chai Z F, Liu Y L, J Inorg Mater., 2019, 35: 272.
[62]
Jennifer M. Jackson and Burns P C, Can Mineral., 2001, 39: 187.

doi: 10.2113/gscanmin.39.1.187
[63]
Wronkiewicz D J, Bates J K, Wolf S F, Buck E C. J. Nucl. Mater., 1996, 238(1): 78.

doi: 10.1016/S0022-3115(96)00383-2
[1] Ziyu Pan, Haodong Ji. Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications [J]. Progress in Chemistry, 2023, 35(8): 1229-1257.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[5] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[6] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[10] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[13] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[14] Jun Jin, Ziheng Lin, Lei Shi. One-Dimensional New Carbon Allotrope: Carbon Chain [J]. Progress in Chemistry, 2021, 33(2): 188-198.
[15] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.