中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1957-1971 DOI: 10.7536/PC211129 Previous Articles   Next Articles

• Review •

Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes

Shunxin Gu, Qin Jiang(), Pengfei Shi   

  1. School of Environmental and Chemical Engineering, Jiangsu Ocean University,Lianyungang 222005, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jiangqin@jou.edu.cn
  • Supported by:
    Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Lianyungang Petrel Project, Opening Foundation of Jiangsu Key Laboratory of Functional Control of Advanced Materials(jsklfctam201808); Jiangsu Provincial Graduate Scientific Research and Innovation Plan(KYCX20_2950)
Richhtml ( 25 ) PDF ( 292 ) Cited
Export

EndNote

Ris

BibTeX

Iridium(Ⅲ) complexes have attracted much attention in the field of luminescent materials because of their high luminescence quantum yield, convenient wavelength regulation, long emission lifetime and good optical stability. Due to its strong cell permeability, Ir(Ⅲ) complex can target a variety of cell tissues and affect their structure and function, thus showing unique antitumor activity. Ir(Ⅲ) complexes have become a research hotspot in the direction of metal antitumor drugs, especially PDT photosensitizers. In this review, the structure-property relationship between the structure of Ir(Ⅲ) complexes and their luminescence and antitumor performances are summarized, the recent developments of Ir(Ⅲ) complexes in the fields of biological imaging, probes and sensors, antitumor therapy are highlighted. The scientific problems existing in the current research are discussed and future application of Ir(Ⅲ) complexes are also prospected.

Contents

1 Introduction

2 Structural modification of the Ir(Ⅲ) complexes

2.1 Mononuclear Ir(Ⅲ)complex

2.2 Multinuclear Ir(Ⅲ) complex

2.3 Macromolecular-Ir(Ⅲ) complex

3 Photophysical properties of Ir(Ⅲ) complexes

3.1 Single-photon emission of Ir(Ⅲ) complex

3.2 Two-photon emission of Ir(Ⅲ) complex

4 Biotargets for Ir(Ⅲ) complexes

4.1 Cell membrane

4.2 Cytoplasm

4.3 Cell organelle

5 Biological applications of Ir(Ⅲ) complexes

5.1 Bioimaging and biosensing

5.2 Antitumor diagnosis and therapy

6 Conclusion and outlook

Fig.1 Molecular structure diagram of mononuclear Ir(Ⅲ) complex[14⇓⇓⇓~18]
Fig.2 Molecular structure diagram of multinuclear Ir(Ⅲ) complex[19⇓⇓⇓⇓⇓~25]
Fig.3 Structure diagram of the Ir(Ⅲ)-macromolecular hybrid[26⇓⇓⇓⇓~31]
Fig.4 Molecular structure diagram of selected luminescent Ir(Ⅲ) complexes[32⇓⇓⇓⇓⇓⇓~39]
Fig.5 Molecular structure diagram of Ir(Ⅲ) complex with diverse intracellular biotarget[43⇓⇓⇓⇓⇓⇓⇓⇓~52]
Fig.6 Ir(Ⅲ) complexes applied for bioimage and biosensor[54⇓⇓⇓⇓⇓⇓⇓⇓~63]
Fig.7 Selected antitumot Ir(Ⅲ) complexes[64⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~75]
Fig.8 Selected antitumot Ir(Ⅲ) complexes[76⇓⇓⇓⇓⇓⇓⇓⇓~85]
[1]
Mao H T, Li G F, Shan G G, Wang X L, Su Z M. Coord. Chem. Rev., 2020, 413: 213283.

doi: 10.1016/j.ccr.2020.213283
[2]
Colombo A, Dragonetti C, Guerchais V, Hierlinger C, Zysman-Colman E, Roberto D. Coord. Chem. Rev., 2020, 414: 213293.

doi: 10.1016/j.ccr.2020.213293
[3]
Shaikh S, Wang Y H, ur Rehman F, Jiang H, Wang X M. Coord. Chem. Rev., 2020, 416: 213344.

doi: 10.1016/j.ccr.2020.213344
[4]
Guan R L, Xie L N, Ji L N, Chao H. Eur. J. Inorg. Chem., 2020, 2020(42): 3978.

doi: 10.1002/ejic.202000754
[5]
Shi H D, Wang Y, Lin S M, Lou J X, Zhang Q L. Dalton Trans., 2021, 50(19): 6410.

doi: 10.1039/D1DT00592H
[6]
Bell J D, Murphy J A. Chem. Soc. Rev., 2021, 50(17): 9540.

doi: 10.1039/D1CS00311A
[7]
Tinker L L, Bernhard S. Inorg. Chem., 2009, 48(22): 10507.

doi: 10.1021/ic900777g
[8]
Chirdon D N, Transue W J, Kagalwala H N, Kaur A, Maurer A B, Pintauer T, Bernhard S. Inorg. Chem., 2014, 53(3): 1487.

doi: 10.1021/ic402411g
[9]
Bhat S S, Naveen S, Revankar V K, Lokanath N K, Pinjari R V, Kumbar V, Bhat K. New J. Chem., 2020, 44(40): 17442.

doi: 10.1039/D0NJ03421E
[10]
Young K J H, Yousufuddin M, Ess D H, Periana R A. Organometallics, 2009, 28(12): 3395.

doi: 10.1021/om900014h
[11]
Choi D, Kim T, Reddy S M, Kang J. Inorg. Chem. Commun., 2009, 12(1): 41.

doi: 10.1016/j.inoche.2008.10.026
[12]
Koga Y, Kamo M, Yamada Y, Matsumoto T, Matsubara K. Eur. J. Inorg. Chem., 2011, 2011(18): 2869.

doi: 10.1002/ejic.201100055
[13]
Boudreault P L T, Esteruelas M A, GÓmez-Bautista D, Izquierdo S, LÓpez A M, Oñate E, Raga E, Tsai J Y. Inorg. Chem., 2020, 59(6): 3838.

doi: 10.1021/acs.inorgchem.9b03509
[14]
He X D, Liu X C, Tang Y H, Du J Y, Tian M, Xu Z S, Liu X Y, Liu Z. Dyes Pigments, 2019, 160: 217.

doi: 10.1016/j.dyepig.2018.08.006
[15]
Liu Z, Romero-CanelÓn I, Qamar B, Hearn J M, Habtemariam A, Barry N P E, Pizarro A M, Clarkson G J, Sadler P J. Angew. Chem., 2014, 126(15): 4022.

doi: 10.1002/ange.201311161
[16]
Pracharova J, Vigueras G, Novohradsky V, Cutillas N, Janiak C, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. Chem. Eur. J., 2018, 24(18): 4607.

doi: 10.1002/chem.201705362
[17]
Jiang Q, Wang M, Yang L F, Chen H, Mao L Q. Anal. Chem., 2016, 88(20): 10322.

doi: 10.1021/acs.analchem.6b03383 pmid: 27686227
[18]
Li Y, Liu B, Lu X R, Li M F, Ji L N, Mao Z W. Dalton Trans., 2017, 46(34): 11363.

doi: 10.1039/C7DT01903C
[19]
Liu B Q, Monro S, Lystrom L, Cameron C G, ColÓn K, Yin H M, Kilina S, McFarland S A, Sun W F. Inorg. Chem., 2018, 57(16): 9859.

doi: 10.1021/acs.inorgchem.8b00789
[20]
Zhang Q, Lu X, Cao H Z, Wang H, Zhu T, Tian X H, Li D D, Zhou H P, Wu J Y, Tian Y P. ACS Appl. Bio Mater., 2020, 3(11): 8105.

doi: 10.1021/acsabm.0c01206
[21]
Na H, Song M N, Teets T S. Chem. Eur. J., 2019, 25(18): 4833.

doi: 10.1002/chem.201900167
[22]
Gupta P, Das B, Borah S T, Ganguli S. Chemistry (Weinheim an der Bergstrasse, Germany)., 2020, 0947.
[23]
Zhang C, Guan R L, Liao X X, Ouyang C, Liu J P, Ji L N, Chao H. Inorg. Chem. Front., 2020, 7(9): 1864.

doi: 10.1039/D0QI00224K
[24]
Chepelin O, Ujma J, Wu X H, Slawin A M Z, Pitak M B, Coles S J, Michel J, Jones A C, Barran P E, Lusby P J. J. Am. Chem. Soc., 2012, 134(47): 19334.

doi: 10.1021/ja309031h pmid: 23137068
[25]
Zhu J H, Tang B Z, Lo K K W. Chem. Eur. J., 2019, 25(45): 10633.

doi: 10.1002/chem.201901029
[26]
Maggioni D, Galli M, D’Alfonso L, Inverso D, Dozzi M V, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D’Alfonso G. Inorg. Chem., 2015, 54(2): 544.

doi: 10.1021/ic502378z pmid: 25554822
[27]
Feng Z Y, Tao P, Zou L, Gao P L, Liu Y, Liu X, Wang H, Liu S J, Dong Q C, Li J, Xu B S, Huang W, Wong W Y, Zhao Q. ACS Appl. Mater. Interfaces, 2017, 9(34): 28319.

doi: 10.1021/acsami.7b09721
[28]
Zhang D Y, Zheng Y, Zhang H, Sun J H, Tan C P, He L, Zhang W, Ji L N, Mao Z W. Adv. Sci., 2018, 5(10): 1800581.

doi: 10.1002/advs.201800581
[29]
Li D, Yan X Q, Hu Y N, Liu Y, Guo R R, Liao M H, Shao B W, Tang Q L, Guo X, Chai R J, Zhang Q, Tang M L. ACS Biomater. Sci. Eng., 2019, 5(3): 1561.

doi: 10.1021/acsbiomaterials.8b01231
[30]
Chan L, Chen X D, Gao P, Xie J, Zhang Z Y, Zhao J F, Chen T F. ACS Nano, 2021, 15(2): 3047.

doi: 10.1021/acsnano.0c09454
[31]
Shen J C, Karges J, Xiong K, Chen Y, Ji L N, Chao H. Biomaterials, 2021, 275: 120979.

doi: 10.1016/j.biomaterials.2021.120979
[32]
Lai P N, Brysacz C H, Alam M K, Ayoub N A, Gray T G, Bao J M, Teets T S. J. Am. Chem. Soc., 2018, 140(32): 10198.

doi: 10.1021/jacs.8b04841
[33]
Fan C H, Sun P P, Su T H, Cheng C H. Adv. Mater., 2011, 23(26): 2981.

doi: 10.1002/adma.201100610
[34]
Shafikov M Z, Zaytsev A V, Suleymanova A F, Brandl F, Kowalczyk A, Gapińska M, Kowalski K, Kozhevnikov V N, Czerwieniec R. J. Phys. Chem. Lett., 2020, 11(15): 5849.

doi: 10.1021/acs.jpclett.0c01276 pmid: 32615767
[35]
Zhu X L, Liu B Q, Cui P, Kilina S, Sun W F. Inorg. Chem., 2020, 59(23): 17096.

doi: 10.1021/acs.inorgchem.0c02366
[36]
Bi X D, Yang R, Zhou Y C, Chen D M, Li G K, Guo Y X, Wang M F, Liu D D, Gao F. Inorg. Chem., 2020, 59(20): 14920.

doi: 10.1021/acs.inorgchem.0c01509
[37]
Wu W J, Guan R L, Liao X X, Yan X, Rees T W, Ji L N, Chao H. Anal. Chem., 2019, 91(15): 10266.

doi: 10.1021/acs.analchem.9b02415
[38]
Jin Z H, Qi S, Guo X S, Tian N, Hou Y J, Li C, Wang X S, Zhou Q X. Chem. Commun., 2020, 56(19): 2845.

doi: 10.1039/C9CC09763E
[39]
Jin C Z, Liang F Y, Wang J Q, Wang L L, Liu J P, Liao X X, Rees T W, Yuan B, Wang H, Shen Y, Pei Z, Ji L N, Chao H. Angew. Chem. Int. Ed., 2020, 59(37): 15987.

doi: 10.1002/anie.202006964
[40]
Shi H F, Sun H B, Yang H R, Liu S J, Jenkins G, Feng W, Li F Y, Zhao Q, Liu B, Huang W. Adv. Funct. Mater., 2013, 23(26): 3268.

doi: 10.1002/adfm.201202385
[41]
Ma Y, Liu S J, Yang H R, Wu Y Q, Yang C J, Liu X M, Zhao Q, Wu H Z, Liang J C, Li F Y, Huang W. J. Mater. Chem., 2011, 21(47): 18974.

doi: 10.1039/c1jm13513a
[42]
Yasukagawa M, Yamada K, Tobita S, Yoshihara T. J. Photochem. Photobiol. A Chem., 2019, 383: 111983.

doi: 10.1016/j.jphotochem.2019.111983
[43]
Liu J P, Jin C Z, Yuan B, Chen Y, Liu X G, Ji L N, Chao H. Chem. Commun., 2017, 53(71): 9878.

doi: 10.1039/C7CC05518H
[44]
Huang H Y, Yang L, Zhang P Y, Qiu K Q, Huang J J, Chen Y, Diao J J, Liu J K, Ji L N, Long J G, Chao H. Biomaterials, 2016, 83: 321.

doi: 10.1016/j.biomaterials.2016.01.014
[45]
Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53(12): 2052.

doi: 10.1039/C6CC10015E
[46]
Xiong K, Zhou Y, Lin X, Kou J, Lin M, Guan R, Chen Y, Ji L, Chao H. Photochem. Photobiol., 2022, 98: 85.

doi: 10.1111/php.13404
[47]
Zhang H W, Tian L, Xiao R X, Zhou Y, Zhang Y Y, Hao J, Liu Y J, Wang J P. Bioorg. Chem., 2021, 115: 105290.

doi: 10.1016/j.bioorg.2021.105290
[48]
He L, Tan C P, Ye R R, Zhao Y Z, Liu Y H, Zhao Q, Ji L N, Mao Z W. Angew. Chem., 2014, 126(45): 12333.

doi: 10.1002/ange.201407468
[49]
Wu W J, Zhang C, Rees T W, Liao X X, Yan X, Chen Y, Ji L N, Chao H. Anal. Chem., 2020, 92(8): 6003.

doi: 10.1021/acs.analchem.0c00259
[50]
Jin C Z, Li G Y, Wu X, Liu J P, Wu W J, Chen Y Z, Sasaki T, Chao H, Zhang Y. Angew. Chem. Int. Ed., 2021, 60(14): 7597.

doi: 10.1002/anie.202015913
[51]
Yuan B, Liu J P, Guan R L, Jin C Z, Ji L N, Chao H. Dalton Trans., 2019, 48(19): 6408.

doi: 10.1039/c9dt01072f pmid: 30994678
[52]
He L, Cao J J, Zhang D Y, Hao L, Zhang M F, Tan C P, Ji L N, Mao Z W. Sens. Actuat. B Chem., 2018, 262: 313.

doi: 10.1016/j.snb.2018.02.022
[53]
Lu N, Luo Y H, Zhang Q L, Zhang P Y. Dalton Trans., 2020, 49(27): 9182.

doi: 10.1039/D0DT01444C
[54]
Han Z, Wang Y J, Chen Y C, Fang H B, Yuan H, Shi X C, Yang B, Chen Z Y, He W J, Guo Z J. Chem. Commun., 2020, 56(58): 8055.

doi: 10.1039/D0CC02328K
[55]
Zhang P Y, Chiu C K C, Huang H Y, Lam Y P Y, Habtemariam A, Malcomson T, Paterson M J, Clarkson G J, O’Connor P B, Chao H, Sadler P J. Angew. Chem. Int. Ed., 2017, 56(47): 14774.

doi: 10.1002/anie.201710973
[56]
Li G Y, Chen Y, Wang J Q, Lin Q, Zhao J, Ji L N, Chao H. Chem. Sci., 2013, 4(12): 4426.

doi: 10.1039/c3sc52301b
[57]
Li G Y, Chen Y, Wang J Q, Wu J H, Gasser G, Ji L N, Chao H. Biomaterials, 2015, 63: 128.

doi: 10.1016/j.biomaterials.2015.06.014
[58]
Liu B, Long J, Zhang M, Cheng K M, Gao X, Zhou Y B, Li Y, Tang Z L, Zhang W. J. Inorg. Biochem., 2022, 226: 111626.

doi: 10.1016/j.jinorgbio.2021.111626
[59]
Liao X X, Shen J C, Wu W J, Kuang S, Lin M W, Karges J, Tang Z L, Chao H. Inorg. Chem. Front., 2021, 8(23): 5045.

doi: 10.1039/D1QI01038G
[60]
Zhang D B, Guo Y Q, Xiao L, Pu S Z. J. Organomet. Chem., 2020, 928: 121551.

doi: 10.1016/j.jorganchem.2020.121551
[61]
Liu Y, Fan C B, Pu S Z. Microchem. J., 2020, 158: 105166.

doi: 10.1016/j.microc.2020.105166
[62]
Li Y Y, Wu Y Q, Chen L Y, Zeng H, Chen X Y, Lun W C, Fan X L, Wong W Y. J. Mater. Chem. B, 2019, 7(47): 7612.

doi: 10.1039/C9TB01673B
[63]
Carrod A J, Graglia F, Male L, Le Duff C, Simpson P, Elsherif M, Ahmed Z, Butt H, Xu G X, Kam-Wing Lo K, Bertoncello P, Pikramenou Z. Chem. -A Eur. J., 2022, 28(4): e202103541.
[64]
Ye R R, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2016, 45(33): 13042.

doi: 10.1039/C6DT00601A
[65]
Yang J, Fang H J, Cao Q, Mao Z W. Chem. Commun., 2021, 57(9): 1093.

doi: 10.1039/D0CC07104H
[66]
Huang C, Liang C, Sadhukhan T, Banerjee S, Fan Z X, Li T X, Zhu Z L, Zhang P Y, Raghavachari K, Huang H Y. Angew. Chem. Int. Ed., 2021, 60(17): 9474.

doi: 10.1002/anie.202015671
[67]
Wang L L, Guan R L, Xie L N, Liao X X, Xiong K, Rees T W, Chen Y, Ji L N, Chao H. Angew. Chem. Int. Ed., 2021, 60(9): 4657.

doi: 10.1002/anie.202013987
[68]
Yang Y L, Guo L H, Tian Z Z, Ge X X, Gong Y T, Zheng H M, Shi S P, Liu Z. Organometallics, 2019, 38(8): 1761.

doi: 10.1021/acs.organomet.9b00080
[69]
Du F, Bai L, He M, Zhang W Y, Gu Y Y, Yin H, Liu Y J. J. Inorg. Biochem., 2019, 201: 110822.

doi: 10.1016/j.jinorgbio.2019.110822
[70]
Zhang Y Y, Fei W D, Zhang H W, Zhou Y, Tian L, Hao J, Yuan Y H, Li W L, Liu Y J. J. Inorg. Biochem., 2021, 225: 111622.

doi: 10.1016/j.jinorgbio.2021.111622
[71]
Kozieł S A, LesiÓw M K, Wojtala D, Dyguda-Kazimierowicz E, Bieńko D, Komarnicka U K. Pharmaceuticals, 2021, 14(7): 685.

doi: 10.3390/ph14070685
[72]
Ye R R, Peng W, Chen B C, Jiang N, Chen X Q, Mao Z W, Li R T. Metallomics, 2020, 12(7): 1131.

doi: 10.1039/d0mt00060d
[73]
Liu X C, Hao H L, Ge X X, He X D, Liu Y F, Wang Y, Wang H J, Shao M X, Jing Z H, Tian L J, Liu Z. J. Inorg. Biochem., 2019, 199: 110757.

doi: 10.1016/j.jinorgbio.2019.110757
[74]
Ma W L, Ge X X, Xu Z S, Zhang S M, He X D, Li J J, Xia X R, Chen X B, Liu Z. ACS Omega, 2019, 4(12): 15240.

doi: 10.1021/acsomega.9b01863
[75]
Liu X C, He X D, Zhang X J, Wang Y L, Liu J Y, Hao X J, Zhang Y, Yuan X A, Tian L J, Liu Z. ChemBioChem, 2019, 20(21): 2767.

doi: 10.1002/cbic.201900268
[76]
Boreham E M, Jones L, Swinburne A N, Blanchard-Desce M, Hugues V, Terryn C, Miomandre F, Lemercier G, Natrajan L S. Dalton Trans., 2015, 44(36): 16127.

doi: 10.1039/C5DT01855B
[77]
Bi X D, Yang R, Zhou Y C, Chen D M, Li G K, Guo Y X, Wang M F, Liu D D, Gao F. Inorg. Chem., 2020, 59(20): 14920.

doi: 10.1021/acs.inorgchem.0c01509
[78]
Lu C F, Xu W, Shah H, Liu B Q, Xu W, Sun L Y, Qian S Y, Sun W F. ACS Appl. Bio Mater., 2020, 3(10): 6865.

doi: 10.1021/acsabm.0c00784
[79]
Nam J S, Kang M G, Kang J, Park S Y, Lee S J C, Kim H T, Seo J K, Kwon O H, Lim M H, Rhee H W, Kwon T H. J. Am. Chem. Soc., 2016, 138(34): 10968.

doi: 10.1021/jacs.6b05302
[80]
Guo S, Han M P, Chen R Z, Zhuang Y L, Zou L, Liu S J, Huang W, Zhao Q. Sci. China Chem., 2019, 62(12): 1639.

doi: 10.1007/s11426-019-9583-4
[81]
Bevernaegie R, Doix B, Bastien E, Diman A, Decottignies A, Feron O, Elias B. J. Am. Chem. Soc., 2019, 141(46): 18486.

doi: 10.1021/jacs.9b07723 pmid: 31644286
[82]
Kuang S, Sun L L, Zhang X R, Liao X X, Rees T W, Zeng L L, Chen Y, Zhang X T, Ji L N, Chao H. Angew. Chem. Int. Ed., 2020, 59(46): 20697.

doi: 10.1002/anie.202009888
[83]
Lu H, Jiang X P, Chen Y Y, Peng K, Huang Y M, Zhao H, Chen Q, Lv F T, Liu L B, Wang S, Ma Y G. Nanoscale, 2020, 12(26): 14061.

doi: 10.1039/d0nr03398g pmid: 32582896
[84]
Wang K N, Liu L Y, Qi G B, Chao X J, Ma W, Yu Z Q, Pan Q L, Mao Z W, Liu B. Adv. Sci., 2021, 8(8): 2004379.

doi: 10.1002/advs.202004379
[85]
Yuan H, Han Z, Chen Y C, Qi F, Fang H B, Guo Z J, Zhang S R, He W J. Angew. Chem. Int. Ed., 2021, 60(15): 8174.

doi: 10.1002/anie.202014959 pmid: 33656228
[1] Yuhan Bao, Zifeng Guo, Jintao Li, Mingzu Zhang, Jinlin He, Peihong Ni. Combination Antitumor Therapy Based on Codelivery Nanosystems of Doxorubicin [J]. Progress in Chemistry, 2023, 35(8): 1123-1135.
[2] Wei Tang, Yan Bing, Xudong Liu, Hongji Jiang. Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks [J]. Progress in Chemistry, 2023, 35(10): 1461-1485.
[3] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[4] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[5] Xiaoxiao Tan, Guoshuai Li, Qingpeng Wang, Bingquan Wang, Dacheng Li, Peng George Wang. Small Molecular Platinum(Ⅳ) Compounds as Antitumor Agents [J]. Progress in Chemistry, 2018, 30(6): 831-846.
[6] Yuewen Sun, Suxing Jin, Xiaoyong Wang, Zijian Guo. Application Prospect of Metal Complexes in Chemoimmunotherapy of Tumors [J]. Progress in Chemistry, 2018, 30(10): 1573-1583.
[7] Liang Aihui, Huang Gui, Wang Zhiping, Chen Shuiliang, Hou Haoqing. Polymer Phosphorescent Materials with Iridium Complexes and Their Electroluminescent Properties [J]. Progress in Chemistry, 2016, 28(4): 471-481.
[8] Wang Dongdong, Dong Hua, Lei Xiaoli, Yu Yue, Jiao Bo, Wu Zhaoxin. Iridium Complexes for Triplet Photosensitizer [J]. Progress in Chemistry, 2015, 27(5): 492-502.
[9] Wang Yian, You Ming. Chemoprevention of Oral Cancer by a Mixture of Chinese Herbs (Anti-Tumor Mixture B) [J]. Progress in Chemistry, 2013, 25(09): 1594-1600.
[10] Ma Zhijun, Lei Ting, Pei Jian*, Liu Chenjiang*. Blue Host Materials for Phosphorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2013, 25(06): 961-974.
[11] Lang Xuliang, Luan Xudong, Gao Chunmei, Jiang Yuyang. Recent Progress of Acridine Derivatives with Antitumor Activity [J]. Progress in Chemistry, 2012, 24(08): 1497-1505.
[12] Tao Ran, Qiao Juan, Duan Lian, Qiu Yong. Blue Phosphorescence Materials for Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2010, 22(12): 2255-2267.
[13] . Phosphorus-Containing Organic Electroluminescent Materials [J]. Progress in Chemistry, 2010, 22(05): 898-904.
[14] . Application and Luminescent Properties of the Complexes of Lanthanide Ions Based on Calixarene Derivatives [J]. Progress in Chemistry, 2010, 22(0203): 427-432.
[15] Yang Xiaofeng Dong xiangting Wang Jinxian Liu Guixia. Preparation Methods of Inorganic Nano Rare Earth Luminescent Materials [J]. Progress in Chemistry, 2009, 21(6): 1179-1186.