中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1665-1679 DOI: 10.7536/PC200530 Previous Articles   Next Articles

Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions

Dan-Wei Zhang1,**(), Hui Wang1, Zhan-Ting Li1,**()   

  1. 1. Department of Chemistry, Fudan University, Shanghai 200438, China
  • Received: Revised: Online: Published:
  • Contact: Dan-Wei Zhang, Zhan-Ting Li
  • Supported by:
    the National Natural Science Foundation of China(21772026)
Richhtml ( 35 ) PDF ( 436 ) Cited
Export

EndNote

Ris

BibTeX

It has been established that hydrophobicity, hydrogen bonding, electrostatic attraction, halogen bonding and coordination all can be utilized to stabilize the folding and/or helicity of aromatic macromolecules and supramolecular systems. The resulting aromatic helical tubes possess defined diameters and tunable depth and can be used as synthetic receptors for recognizing or encapsulating a variety of guest species, achieving chirality induction and transfer, promoting organic transformations, and as artificial channels for transmembrane transport. This review highlights the advance in the construction of such family of macromolecular and supramolecular tubes from aromatic segments and their important functions. In the first section, we introduce the background of the formation of tubular structures from different strategies and the features of the supramolecular and macromolecular approaches. We then highlight the formation of molecular tubes from various oligomeric molecules with aromatic amide, hydrazide, triazole and ethyne repeat segments. In the following section, we describe the use of polymeric backbones with the above repeat segments. The self-assembly strategy for the formation of supramolecular tubes is then summarized in another section. In particular, the utility of hydrogen bonding, halogen bonding and coordination interactions has been described. When available, the functions of the tubular structures are briefly presented. In the last section, we discuss the synthetic challenges for the formation of long macromolecular tubes and the new potential applications of this family of structurally unique structures.

Contents

1 Introduction

2 Aromatic oligomeric tubes

2.1 Aromatic amide and hydrazide backbones

2.2 Aromatic triazole backbones

2.3 Aromatic ethyne backbones

3 Aromatic polymeric tubes

3.1 Aromatic amide backbones and analogues

3.2 Aromatic triazole and oxadiazole backbones

3.3 Aromatic ethyne backbones

4 Aromatic supramolecular tubes

5 Conclusion and outlook

Fig.1 The crystal structure of oligomer 7[34]
Fig.2 The crystal structure of oligomer 8[35]
Fig.3 Schematic representation of solvophobically driven folding-inducing-folding of oligomers 11,(R)-12 and 13[53]
Scheme 1 The synthesis of polymers P25~P27
Fig.4 (a) Side and (b) top view of optimized right-handed helix formed by polymer P29a of 9 turns with a cavity diameter of 1.3 nm. The tetra(ethylene glycol) chains were replaced with methyl groups for clarity[71]
Fig.5 Schematic presentation of the transmembrane channel formed by helical polymer P30[74]
Fig.6 Calculated helix of polymers P34 and P35, highlighting a large cavity diameter[82]
Scheme 2 The synthesis of polymers P41 and P42[86]
Scheme 3 Pyridine-Pd2+ binding of 48a~c forms metal-ligand complexes to generate coordination supramolecular helical polymer or π-stacked columnar polymer[93]
Fig.7 Crystal structure of 53a·MeOH[98]
Fig.8 Crystal structure of 53b·H2O[99]
[1]
Harada A, Li J, Kamachi M . Nature, 1993,364:516.
[2]
Ikeda T, Ooya T , Yui N. Macromol. Rapid Commun., 2000,21:1257.
[3]
Liu C Z, Yan M, Wang H, Zhang D W, Li Z T . ACS Omega, 2018,3:5165.
[4]
Tasis D, Tagmatarchis N , Bianco A. Prato M. Chem. Rev., 2006,106:1105.
[5]
Liu L, Niu Z, Chen J. Chinese Chem . Lett., 2018,29:571.
[6]
李晓微 ( Li X W), 许海芬(Xu H F), 周晋(Zhou J), 闫格(Yan G), 张雷(Zhang L), 禚淑萍(Zhuo S P). 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1917.
[7]
Hartgerink J D, Clark T D , Ghadiri M R. Chem. Eur. J., 1998,4:1367.
[8]
Harada A , Kamachi M. Polym. Adv. Technol., 1997,8:241.
[9]
Zhang D W, Wang H , Li Z T. Macromol. Rapid Commun., 2017,38:1700179.
[10]
Schwartz E, Koepf M, Kitto H J , Nolte R J M, Rowan A E. Polym. Chem., 2011,2:33.
[11]
Wang Q, Chu B F, Chu J H, Liu N , Wu Z Q. ACS Macro Lett., 2018,7:127.
[12]
Zhou L, Shen L, Huang J, Liu N, Zhu Y Y , Wu Z Q. Chinese J. Polym. Sci., 2018,36:163.
[13]
Horne W S , Gellman S H. Acc. Chem. Res., 2008,41:1399.
[14]
Ferrand Y , Huc I. Acc. Chem. Res., 2018,51:970.
[15]
江华 ( Jiang H), 李巧连(Li Q L), 王光霞(Wang G X). 有机化学( Chinese Journal of Organic Chemistry), 2018,38:1065.
[16]
王恒 ( Wang H), 张宇坤(Zhang Y K),邹胜(Zou S),曹金鑫(Cao J X),黄晴菲(Huang Q F),王启卫(Wang Q W), 朱槿(Zhu J). 有机化学( Chinese Journal of Organic Chemistry), 2018,38:2060.
[17]
Huo Y , Zeng H. Acc. Chem. Res., 2016,49:922.
[18]
刘传志 ( Liu Z T), 王辉(Wang H),张丹维(Zhang D W),赵新(Zhao X),黎占亭(Li Z T). 有机化学( Chinese Journal of Organic Chemistry), 2019,39:28.
[19]
Zhang D W, Zhao X , Li Z T. Acc. Chem. Res., 2014,47:1961.
[20]
Yamato K, Kline M, Gong B . Chem. Commun., 2012,48:12142.
[21]
Zhang D W, Zhao X, Hou J L , Li Z T. Chem. Rev., 2012,112:5271.
[22]
Zheng D, Yu C, Zheng L, Zhan Y , Jiang H. Chin. Chem. Lett., 2020,31:673.
[23]
Gong B. Acc. Chem. Res., 2008,41:1376.
[24]
Li Z T, Hou J L , Li C. Acc. Chem. Res., 2008,41:1343.
[25]
Li Z T, Hou J L, Li C , Yi H P. Chem. Asian J., 2006,1:766.
[26]
Huc I. Eur. J. Org. Chem., 2004,17.
[27]
Gong B. Chem. Eur. J., 2001,7:4336.
[28]
Yi H P, Shao X B, Hou J L, Li C, Jiang X K , Li Z T. New J. Chem., 2005,29:1213.
[29]
Hou J L, Shao X B, Chen G J, Zhou Y X, Jiang X K, Li Z T . Am. Chem. Soc., 2004,126:12386.
[30]
Li C, Ren S F, Hou J L, Yi H P, Zhu S Z, Jiang X K , Li Z T. Angew. Chem. Int. Ed., 2005,44:5725.
[31]
Yi H P, Li C, Hou J L, Jiang X K, Li Z T . Tetrahedron, 2005,61:7974.
[32]
Li X, Markandeya N, Jonusauskas G , McClenaghan N D, Maurizot V, Denisov S A, Huc I. Am. Chem. Soc., 2016,138:13568.
[33]
Huc I, Maurizot V, Gornitzka H , Léger J M. Chem. Commun., 2002,578.
[34]
Ong W Q, Zhao H, Du Z , Yeh J Z Y, Ren C, Tan L Z W, Zhang K, Zeng H. Chem. Commun., 2011,6416.
[35]
Hu Z Q, Hu H Y, Chen C F . Org. Chem., 2006,71:1131.
[36]
Garric J, Léger J M , Huc I. Angew. Chem. Int. Ed., 2005,44:1954.
[37]
Gan Q, Ferrand Y, Bao C, Kauffmann B, Grélard A, Jiang H, Huc I . Science, 2011,331:1172.
[38]
Gan Q, Wang X, Kauffmann B, Rosu F, Ferrand Y, Huc I . Nature Biotech., 2017,12:447.
[39]
Guichard G, Huc I . Chem. Commun., 2011,47:5933.
[40]
Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I , Jiang H. Angew. Chem. Int. Ed., 2008,47:1715.
[41]
Hanan G S, Lehn J M, Kyritsakas N, Fischer J . Chem. Soc. Chem. Commun., 1995,765.
[42]
Yuan Q, Cheng Y, Lou X , Xia F. Chin. J. Chem., 2019,37:1072.
[43]
王昭 ( Wang Z),郝凌云(Hao L Y),张小娟(Zhang X J),盛瑞隆(Sheng R L). 有机化学( Chinese Journal of Organic Chemistry), 2019,39:2379.
[44]
Peng R, Xu Y , Cao Q. Chin. Chem. Lett., 2018,29:1465.
[45]
Zhang M , Liang G. Sci. China Chem., 2018,61:1088.
[46]
Wu D, Xie X, Kadi A A , Zhang Y. Chin. Chem. Lett., 2018,29:1098.
[47]
Meudtner R M , Hecht S. Angew. Chem. Int. Ed., 2008,47:4926.
[48]
Valverde I E, Mindt T L . Chimia, 2013,67:262.
[49]
McDonald K P, Hua Y, Flood A H . 1,2,3-Triazoles and the Expanding Utility of Charge Neutral CH…Anion Interactions. In: Gale P, Dehaen W.(eds). Anion Recognition in Supramolecular Chemistry. Topics in Heterocyclic Chemistry, Berlin, Heidelberg: Springer, 2010, vol 24.
[50]
Juwarker H, Lenhardt J M, Pham D M , Craig S L. Angew. Chem. Int. Ed., 2008,47:3740.
[51]
Shang J, Zhao W, Li X, Wang Y, Jiang H. . Chem. Commun., 2016,52:4505.
[52]
Yang L, Zhao W, Che Y K, Wang Y, Jiang H . Chinese Chem. Lett., 2017,28:1659.
[53]
Wu C F, Li Z M, Xu X N, Zhao Z X, Zhao X, Wang R X , Li Z T. Chem. Eur. J., 2014,20:1418.
[54]
You L Y, Chen S G, Zhao X, Liu Y, Lan W X, Zhang Y, Lu H J, Cao C Y , Li Z T. Angew. Chem. Int. Ed., 2012,51:1657.
[55]
Liu Y H, Zhang L, Xu X N, Li Z M, Zhang D W, Zhao X , Li Z T. Org. Chem. Front., 2014,1:494.
[56]
Lang C, Deng X, Yang F, Yang B, Wang W, Qi S, Zhang X, Zhang C, Dong Z , Liu J. Angew. Chem. Int. Ed., 2017,56:12668.
[57]
Nelson J C, Saven J G, Moore J S, Wolynes P G . Science, 1997,277:1793.
[58]
Prince R B, Barnes S A, Moore J S . Am. Chem. Soc., 2000,122:2758.
[59]
Tanatani T, Hughes T S , Moore J S. Angew. Chem. Int. Ed., 2002,41:325.
[60]
Prince R B, Brunsveld L, Meijer E W , Moore J S. Angew. Chem. Int. Ed., 2000,39:228.
[61]
Inouye M, Waki M, Abe H . Am. Chem. Soc., 2004,126:2022.
[62]
Chang K J, Kang B N, Lee M H, Jeong K S . Am. Chem. Soc., 2005,127:12214.
[63]
Suk J m, Jeong K S . Am. Chem. Soc., 2008,130:11868.
[64]
Lee C, Lee H, Lee S, Jeon H G, Jeong K S . Org. Chem. Front., 2019,6:299.
[65]
Kim Y H, Calabrese J , McEwen C. J. Am. Chem. Soc., 1996,118:1545.
[66]
Zhang C, Shoji Y, Higashihara T, Tsukuda A, Ochi T, Ueda M . J. Polym. Sci. Part A Polym. Chem., 2011,49:4725.
[67]
Lu Y X, Shi Z M, Li Z T, Guan Z. . Chem. Commun., 2010,46:9019.
[68]
Kanamori D , Okamura T a, Yamamoto H, Ueyama N. Angew. Chem. Int. Ed., 2005,44:969.
[69]
Cao J, Kline M, Chen Z, Luan B, Lv M, Zhang W, Lian C, Wang Q, Huang Q, Wei X, Deng J, Zhu J, Gong B. . Chem. Commun., 2012,11112.
[70]
Xu Y X, Zhan T G, Zhao X , Li Z T. Org. Chem. Front., 2014,1:73.
[71]
Zhang P, Zhang L, Wang H, Zhang D W , Li Z T. Polym. Chem., 2015,6:2955.
[72]
Zhang P, Zhang L, Wang Z K, Zhang Y C, Guo R, Wang H, Zhang D W , Li Z T. Chem. Asian J., 2016,11:1725.
[73]
Zhang P, Wang Z, Zhang L, Wang H, Zhang D, Hou J , Li Z. Chin. J. Chem., 2016,34:678.
[74]
Xin P, Zhu P, Su P, Hou J L, Li Z T . Am. Chem. Soc., 2014,136:13078.
[75]
Si W, Xin P, Li Z T , Hou J L. Acc. Chem. Res., 2015,48:1612.
[76]
Guo R, Zhang L, Wang H, Zhang D W , Li Z T. Polym. Chem., 2015,6:2382.
[77]
van Gorp J J, Vekemans J A J M, Meijer E W . Chem. Commun., 2004,60.
[78]
Sinkeldam R W, van Houtem M H C J, Pieterse K, Vekemans J A J M, Meijer E W . Chem. Eur. J., 2006,12:6129.
[79]
Sinkeldam R W , Hoeben F J M, Pouderoijen M J, De Cat I, Zhang J, Furukawa S, De Feyter S, Vekemans J A J M, Meijer E W. Am. Chem. Soc., 2006,128:16113.
[80]
Meudtner R M , Hecht S. Macromol. Rapid Commun., 2008,29:347.
[81]
Meudtner R M, Ostermeier M, Goddard R, Limberg C , Hecht S. Chem. Eur. J., 2007,13:9834.
[82]
Pfukwa R , Kouwer P H J, Rowan A E, Klumperman B. Angew. Chem. Int. Ed., 2013,52:11040.
[83]
Zhu J, Dong Z, Lei S, Cao L, Yang B, Li W, Zhang Y, Liu J , Shen J. Angew. Chem. Int. Ed., 2015,54:3097.
[84]
Lang C, Li W, Dong Z, Zhang X, Yang F, Yang B, Deng X, Zhang C, Xu J , Liu J. Angew. Chem. Int. Ed., 2016,55:9723.
[85]
Chen F, Shen J, Li N, Roy A, Ye R, Ren C , Zeng H. Angew. Chem. Int. Ed., 2020,59:1440.
[86]
Hecht S , Khan A. Angew. Chem. Int. Ed., 2003,42:6021.
[87]
Block M A B, Hecht S . Macromolecules, 2008,41:3219.
[88]
Waki M, Abe H , Inouye M. Chem. Eur. J., 2006,12:7839.
[89]
Abe H, Okada K, Makida H , Inouye M. Org. Biomol. Chem., 2012,10:6930.
[90]
Makida H, Abe H , Inouye M. Org. Biomol. Chem., 2015,13:1700.
[91]
Zhao D , Moore J S. Org. Biomol. Chem., 2003,1:3471.
[92]
Zhao D, Moore J S . Am. Chem. Soc., 2003,125:16294.
[93]
Wackerly J W, Moore J S . Macromolecules, 2006,39:7269.
[94]
Li W, Zhang C, Qi S, Deng X, Wang W, Yang B, Liu J, Dong Z . Polym. Chem. 2017,8:1294.
[95]
Zeng C, Zhang C Y, Zhu J Y , Dong Z Y. Chinese J. Polym. Sci. 2018,36:261.
[96]
Yan T, Yang F, Qi S, Fan X, Liu S, Ma N, Luo Q, Dong Z, Liu J. . Chem. Commun., 2019,2509.
[97]
Zhang C, Deng X, Wang C, Bao C, Yang B, Zhang H, Qi S, Dong Z . Chem. Sci., 2019,10:8648.
[98]
Zhao H, Ong W Q, Zhou F, Fang X, Chen X , Li S F Y, Su H, Cho N J, Zeng H. Chem. Sci., 2012,3:2042.
[99]
Zhao H, Sheng S, Hong Y, Zeng H . Am. Chem. Soc., 2014,136:14270.
[100]
Liu C Z, Koppireddi S, Wang H, Zhang D W , Li Z T. Angew. Chem. Int. Ed., 2019,58:226.
[101]
Koppireddi S, Liu C Z, Wang H, Zhang D W, Li Z T . CrystEngComm, 2019,21:2626.
[102]
Zhang A M, Ferguson J S, Yamato K, Zheng C, Gong B . Org. Lett., 2006,8:5117.
[103]
Shi Z M, Huang J, Ma Z, Zhao X, Guan Z, Li Z T . Macromolecules, 2010,43:6185.
[1] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[2] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[3] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[4] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[5] Wang Hui, Ponmani Jeyakkumar, Sangaraiah Nagarajan, Meng Jiangping, Zhou Chenghe. Current Researches and Applications of Perylene Compounds [J]. Progress in Chemistry, 2015, 27(6): 704-743.
[6] Zhang Mingming, Fan Jianfen, Yu Yi, Yan Xiliang, Xu Jian. Studying on the Mechanisms of NH3/NH4+through Ammonium Transport Proteins [J]. Progress in Chemistry, 2015, 27(11): 1658-1664.
[7] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
[8] Zhao Chuanqi, Qu Xiaogang*. Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes [J]. Progress in Chemistry, 2013, 25(04): 539-544.
[9] Wan Decheng, Jin Ming, Pu Hongting. Supramolecular Fuzzy Recognition [J]. Progress in Chemistry, 2011, 23(10): 2095-2102.
[10] . Inorganic Ions and Small Molecular Recognition Based on Functional Modification Quantum Dots [J]. Progress in Chemistry, 2010, 22(06): 1077-1085.
[11] . Molecular Imprinting Technology Based on Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 888-897.
[12] . Click Chemistry and Functional Organic/ Polymeric Materials [J]. Progress in Chemistry, 2010, 22(0203): 406-416.
[13] Kan Xianwen Yin Yuxin Geng Zhirong Wang Zhilin. The Preparation and Applications of Molecularly Imprinted Polymers Based on Silica Materials [J]. Progress in Chemistry, 2010, 22(01): 107-112.
[14] Zhu Wenbing Wu Fangying. Monosaccharide Recognition Based on Fluorescent Receptor Containing Boronic Acid [J]. Progress in Chemistry, 2009, 21(6): 1241-1253.
[15] Sun Tao Shen Jian Sun Hongyuan Hao Aiyou. A Novel Model of Host Molecule in Supramolecular Based on Cyclodextrin-Crownether Coupling System [J]. Progress in Chemistry, 2009, 21(12): 2515-2524.