中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1658-1664 DOI: 10.7536/PC150429 Previous Articles   Next Articles

• Review and comments •

Studying on the Mechanisms of NH3/NH4+through Ammonium Transport Proteins

Zhang Mingming, Fan Jianfen*, Yu Yi, Yan Xiliang, Xu Jian   

  1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21173154)and the National Key Basic Research and Development Program of China(973 Program)(No.2012CB825803).
PDF ( 655 ) Cited
Export

EndNote

Ris

BibTeX

Ammonium transport proteins widely exist in various life forms including bacteria, fungi, plants, animals, etc. The transport of NH3/NH4+ through an ammonium transport protein has been widely studied. However, the issue that the ionic NH4+ or the electrically neutral NH3 species truly goes through the hydrophobic pore of an ammonium transport protein remains controversial. This review surveys the progress in studying on the transport mechanisms of NH3/NH4+ through several typical ammonium transport proteins. The main mechanisms include the single transport of NH3 or NH4+, and the cooperative transport of NH3 and H+, etc.

Contents
1 Introduction
2 NH3 transport mechanism
3 NH4+ transport mechanism
4 Cooperative transport of NH3 and H+
5 Other transport mechanisms
6 Conclusion

CLC Number: 

[1] Kleiner D. FEMS Microbiol. lett., 1985, 32:87.
[2] Von Wrién N, Merrick M. Molecular Mechanisms Controlling Transmembrane Transport. BER:Springer, 2004. 95.
[3] Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A. Microbiology, 2001, 147:135.
[4] Marini A M, Soussi-Boudekou S, Vissers S, Andre B. Mol. Cell. Biol., 1997, 17:4282.
[5] Sohlenkamp C, Wood C C, Roeb G W, Udvardi M K. Plant Physiol., 2002, 130:1788.
[6] Ludewig U, Neuhäuser B, Dynowski M. FEBS Lett., 2007, 581:2301.
[7] Khademi S, O'Connell J, Remis J, Robles-Colmenares Y, Miericke L J, Stroud R M. Science, 2004, 305:1587.
[8] Zheng L, Kostrewa D, Bernèche S, Winkler F K, Li X D. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:17090.
[9] Andrade S L A, Dickmanns A, Ficner R, Einsle O. Proc. Natl. Acad. Sci. U. S. A., 2005, 102:14994.
[10] Lupo D, Li X D, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler F K. Proc. Natl. Acad. Sci. U. S. A., 2007, 104:19303.
[11] Gruswitz F, Chaudhary S, Ho J D, Schlessinger A, Pezeshki B, Ho C M, Sali A, Westhoff C M, Stroud R M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:9638.
[12] Javelle A, Lupo D, Li X D, Merrick M, Chami M, Ripoche P, Winkler F K. J. Struct. Biol., 2007, 158:472.
[13] Lamoureux G, Javelle A, Baday S, Wang S, Bernèche S. Transfus. Clin. Biol., 2010, 17:168.
[14] Luzhkov V B, Almlöf M, Nervall M, Åqvist J. Biochemistry, 2006, 45:10807.
[15] Nygaard T P, Alfonso-Prieto M, Peters G H, Jensen M O, Rovira C. J. Phys. Chem. B, 2010, 114:11859.
[16] Akgun U, Khademi S. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:3970.
[17] Ishikita H, Knapp E W. J. Am. Chem. Soc., 2007, 129:1210.
[18] Lin Y, Cao Z, Mo Y. J. Phys. Chem. B, 2009, 113:4922.
[19] Liu Y, Hu X. J. Phys. Chem. A, 2006, 110:1375.
[20] Nygaard T P, Rovira C, Peters G H, Jensen M O. Biophys. J., 2006, 91:4401.
[21] Yang H, Xu Y, Zhu W, Chen K, Jiang H. Biophys. J., 2007, 92:877.
[22] Wang J, Yang H, Zuo Z, Yan X, Wang Y, Luo X, Jiang H, Chen K, Zhu W. J. Phys. Chem. B, 2010, 114:15172.
[23] Wang J, Fulford T, Shao Q, Javelle A, Yang H, Zhu W, Merrick M. PLoS One, 2013, 8:e62745.
[24] Lin Y, Cao Z, Mo Y. J. Am. Chem. Soc., 2006, 128:10876.
[25] Bostick D L, Brooks C L. PLoS Comput. Biol., 2007, 3:e22.
[26] Lide D R. Handbook of Chemistry and Physics. Cleveland, OH:Chemical Rubber Publishing, 2001.
[27] Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron J P. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:17222.
[28] Zidi-Yahiaoui N, Mouro-Chanteloup I, D'Ambrosio A, Lopez C, Gane P, Le Van Kim C, Cartron J P, Colin Y, Ripoche P. Biochem. J., 2005, 391:33.
[29] Ludewig U. Transfus. Clin. Biol., 2006, 13:111.
[30] Mayer M, Schaaf G, Mouro I, Lopez C, Colin Y, Neumann P, Cartron J P, Ludewig U. J. Gen. Physiol., 2006, 127:133.
[31] Neuhäuser B, Dynowski M, Ludewig U. FEBS Lett., 2009, 583:2833.
[32] Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler F K. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:5040.
[33] Cao Z, Mo Y, Thiel W. Angew. Chem. Int. Ed., 2007, 119:6935.
[34] Javelle A, Severi E, Thornton J, Merrick M. J. Biol. Chem., 2004, 279:8530.
[35] Zidi-Yahiaoui N, Callebaut I, Genetet S, Le Van Kim C, Cartron J P, Colin Y, Ripoche P, Mouro-Chanteloup I. Am. J. Physiol. Cell Physiol., 2009, 297:C537.
[36] Bostick D L, Brooks C L. Biophys. J., 2007, 92:L103.
[37] Baday S, Wang S, Lamoureux G, Bernèche S. Biochemistry, 2013, 52:7091.
[38] Lamoureux G, Klein M L, Bernèche S. Biophys. J., 2007, 92:L82.
[39] Ludewig U, von Wirén N, Frommer W B. J. Biol. Chem., 2002, 277:13548.
[40] Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El Bakkoury M, Marini A M, Andre B, Hamacher T, Boles E, von Wirén N, Frommer W B. J. Biol. Chem., 2003, 278:45603.
[41] Mayer M, Dynowski M, Ludewig U. Biochem. J., 2006, 396:431.
[42] Wood C C, Porée F, Dreyer I, Koehler G J, Udvardi M K. FEBS Lett., 2006, 580:3931.
[43] Mayer M, Ludewig U. Plant Biology, 2006, 8:522.
[44] Neuhäuser B, Dynowski M, Mayer M, Ludewig U. Plant Physiol., 2007, 143:1651.
[45] Søgaard R, Alsterfjord M, Macaulay N, Zeuthen T. Pflügers Arch., 2009, 458:733.
[46] Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Chérif-Zahar B, Planelles G. J. Biol. Chem., 2004, 279:15975.
[47] Wacker T, Garcia-Celma J J, Lewe P, Andrade S L. Proc. Natl. Acad. Sci. U. S. A., 2014, 111:9995.
[48] Nakhoul N L. Am. J. Physiol. Renal Physiol., 2005, 288:F170.
[49] Nakhoul N L, Schmidt E, Abdulnour-Nakhoul S M, Hamm L L. Transfus. Clin. Biol., 2006, 13:147.
[50] Wang S, Orabi E A, Baday S, Bernèche S, Lamoureux G. J. Am. Chem. Soc., 2012, 134:10419.
[51] Javelle A, Lupo D, Zheng L, Li X D, Winkler F K, Merrick M. J. Biol. Chem., 2006, 281:39492.
[52] Hall J A, Kustu S. Proc. Natl. Acad. Sci. U. S. A., 2011, 108:13270.
[53] Ortiz-Ramirez C, Mora S I, Trejo J, Pantoja O. J. Biol. Chem., 2011, 286:31113.
[54] Neuhäuser B, Ludewig U. J. Biol. Chem., 2014, 289:11650.
[55] Neuhäuser B, Dynowski M, Ludewig U. Channels, 2014, 8:496.
[56] Westhoff C M, Ferreri-Jacobia M, Mak D O, Foskett J K. J. Biol. Chem., 2002, 277:12499.
[57] Mak D O D, Dang B, Weiner I D, Foskett J K, Westhoff C M. Am. J. Physiol., 2006, 290:F297.
[58] Ludewig U. J. Physiol., 2004, 559:751.
[59] Westhoff C M, Siegel D L, Burd C G, Foskett J K. J. Biol. Chem., 2004, 279:17443.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.