中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 463-475 DOI: 10.7536/PC180219 Previous Articles   Next Articles

• Review •

Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang

Xiang Wang*   

  1. MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21732004, 21572111, 91427301).
PDF ( 758 ) Cited
Export

EndNote

Ris

BibTeX

Research history of heteracalixaromatics and coronarenes are introduced herein. The design and synthesis of heteracalixaromatics and coronarenes are summarized followed by the description of the macrocyclic conformation and cavity structures. Molecular recognition towards cations, anions and neutral guest species and property of molecular assembly of these macrocyclic hosts are presented. Applications of heteracalixaromatics and coronarenes in the fabrication of functional materials are also demonstrated briefly. The future perspectives of heteracalixaromatics and coronarenes in macrocyclic and supramolecular chemistry are discussed at last.
Contents
1 Introduction
2 Macrocyclic and supramolecular chemistry of heteracalixaromatics
2.1 Synthesis and functionalization of heteracalixaromatics and their structures
2.2 Molecular recognition and molecular assembly of heteracalixaromatics
2.3 Probing high valent organocopper chemistry using heteracalixaromatics as molecular tools
2.4 Miscellaneous applications of heteracalixaromatics
3 Macrocyclic and supramolecular chemistry of coronarenes
3.1 Synthesis and functionalization reactions of coronarenes
3.2 Structure of coronarenes
3.3 Property and application of coronarenes
4 Conclusion and outlook

CLC Number: 

[1] Wang M X. Chem. Commun., 2008, 39(21):4541.
[2] Wang M X. Acc. Chem. Res., 2012, 45:182.
[3] Wang D X, Wang M X. Azacalixaromatics in Calixarenes and Beyond, Eds. Neri P, Sessler J L, Wang M X. Springer, 2016,Chapter 14.
[4] Maes W, Dehaen W. Chem. Soc. Rev., 2008, 37:2393.
[5] Tsue H, Ishibashi K, Tamura R. Top. Heterocycl. Chem., 2008, 17:73.
[6] Katz J. Oxacalixarenes in Calixarenes and Beyond, Eds. Ner P, Sessler J L, Wang M X. Springer, 2016. Chapter 15.
[7] Gutsche C D, Calixarenes Revisited. Cambridge:The Royal Society of Chemistry, 1998.
[8] Wang M X, Zhang X H, Zheng Q Y. Angew. Chem. Int. Ed., 2004, 43:838.
[9] Wang M X, Yang H B. J. Am. Chem. Soc., 2004, 126:15412.
[10] Ren W S, Zhao L, Wang M X. J. Org. Chem., 2015, 80:9272.
[11] Wang Q Q, Luo N, Wang X D, Ao Y F, Chen Y F, Liu J M, Su C Y, Wang D X, Wang M X. J. Am. Chem. Soc., 2017, 139:635.
[12] Li J T, Wang L X, Wang D X, Zhao L, Wang M X. J. Org. Chem., 2014, 79:2178.
[13] (a) Mascal M, Armstrong A, Bartberger M D. J. Am. Chem. Soc., 2002, 124:6274.;
(b) Quinonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deya P M. Angew. Chem. Int. Ed., 2002, 41:3389.;
(c) Alkorta I, Rozas I, Elguero J. J. Am. Chem. Soc., 2002, 124:8593.
[14] For reviews, see:(a) Wang D X, Wang M X. Chimia, 2011, 65:939.;
(b) Frontera A, Gamez P, Mascal M, Mooibroek T J, Reedijk J. Angew. Chem. Int. Ed., 2011, 50:9564.;
(c) Chifotides H T, Dunbar K R. Acc. Chem. Res.,2013, 46:894.;
(d) Ballester P. Acc. Chem. Res., 2013, 46:874.;
(e) Watt M M, Sollins M S, Johnson D W. Acc. Chem. Res., 2013, 46:955.;
(f) Jentzsch A V, Hennig A, Mareda J, Matile S. Acc. Chem. Res., 2013, 46:2791.;
(g) Giese M, Albrecht M, Rissanen K. Chem. Rev., 2015, 115:8867.
[15] (a) Berryman O B, Bryantsev V S, Stay D P, Johnson D W, Hay B P. J. Am. Chem. Soc., 2007, 129:48.;
(b) Hay B P, Bryantsev V S. Chem. Commun., 2008, 39(21):2417.;
(c) Berryman O B, Johnson D W. Chem. Commun., 2009, 40(22):3143.
[16] Wang D X, Zheng Q Y, Wang Q Q, Wang M X. Angew. Chem. Int. Ed., 2008, 47:7485.
[17] Wang D X, Wang Q Q, Han Y, Wang Y, Huang Z T, Wang M X. Chem. Eur. J., 2010, 16:13053.
[18] Wang D X, Wang M X. J. Am. Chem. Soc., 2013, 135:892.
[19] (a) Gong H Y, Wang D X, Zheng Q Y, Wang M X. Tetrahedron, 2009, 65:87.;
(b) Fang Y X, Ao Y F, Wang D X, Zhao L, Wang M X. Tetrahedron, 2015, 71:2105.
[20] Gong H Y, Zheng Q Y, Zhang X H, Wang D X, Wang M X. Org. Lett., 2006, 8:4895.
[21] Fa S X, Chen X F, Yang S, Wang D X, Zhao L, Chen E Q, Wang M X. Chem. Commun., 2015, 51:5112.
[22] (a) Wu J C, Zhao L, Wang D X, Wang M X. Inorg. Chem., 2012, 51:3860.;
(b) Wu J C, Zhao L, Wang D X, Wang M X. Chinese J. Chem. 2013, 31:589.
[23] Gao C Y, Zhao L, Wang M X. J. Am. Chem. Soc., 2011, 133:8448.
[24] Gao C Y, Zhao L, Wang M X. J. Am. Chem. Soc., 2012, 134:824.
[25] (a) Fa S X, Wang L X, Wang D X, Zhao L, Wang M X. J. Org. Chem., 2014, 79:3559.;
(b) Wang L X, Zhao L, Wang D X, Wang M X. Chem. Commun., 2011, 47:9690.
[26] For recent review articles and research examples, see:(a) Allen S E, Walvood R R, Padilla-Salinas R, Kozlowski M C. Chem. Rev., 2013, 113:6234.;
(b) McCann S D, Stahl S S. Acc. Chem. Res.. 2015, 48:1756.;
(c) Li J D, Chen G S, Tan Z. Adv. Synth. Catal., 2016, 358:1174.;
(d) Zhang W, Wang F, McCann S D, Wang D H, Chen P H, Stahl S S, Liu G S. Science, 2016, 353:1014.;
(e) Chen X, Hao X S, Goodhue C E, Yu J Q. J. Am. Chem. Soc., 2006, 128:6790.;
(f) Wendlandt A E, Suess A M, Stahl S S. Angew. Chem. Int. Ed., 2011, 5:11062.;
(g) Phipps R J, Grimster N P, Gaunt M J. J. Am. Chem. Soc., 2008, 130:8172.;
(h) Chen B, Hou X L, Li Y X, Wu Y D. J. Am. Chem. Soc., 2011, 133:7668.;
(i) King A E, Huffman L M, Casitas A, Costas M, Ribas X, Stahl S S. J. Am. Chem. Soc., 2010, 132:12068.
[27] Yao B, Wang D X, Huang Z T, Wang M X. Chem. Commun., 2009, 110(20):2899.
[28] Zhang H,Yao B, Zhao L, Wang D X,Xu B Q, Wang M X. J. Am. Chem. Soc., 2014, 136:6326.
[29] (a) Yao B, Wang Z L, Zhang H, Wang D X, Zhao L, Wang M X. J. Org. Chem., 2012, 77:3336.;
(b) Long C, Zhang L, You J S, Wang M X. Organometallics, 2014, 33:1061.
[30] Wang Z L, Zhao L, Wang M X. Org. Lett., 2001, 13:6560.
[31] Liu Y, Zhang Q, Guo Q H, Wang M X. J. Org. Chem., 2016, 81:10404.
[32] Wang F, Zhao L, You J S, Wang M X. Org. Chem. Front., 2016, 3:880.
[33] Wang Z L, Zhao L, Wang M X. Chem. Commun., 2012, 48:9418.
[34] Wang Z L, Zhao L, Wang M X. Org. Lett., 2012,14:1472.
[35] Zhang H, Zhao L, Wang D X, Wang M X. Org. Lett., 2013, 15:3836.
[36] Zhang Q, Wang M X. Org. Chem. Front., 2017, 4:283.
[37] Yao B, Liu Y, Zhao L, Wang D X, Wang M X. J. Org. Chem., 2014, 79:11139.
[38] Liu Y, Long C, Zhao L, Wang M X. Org. Lett., 2016, 18:5078.
[39] (a) Tsue H, Ishibashi K, Tokita S, Takahashi H, Matsui K, Tamura R. Chem. Eur. J., 2008, 14:6125.;
(b) Tsue H, Matsui K, Ishibashi K, Takahashi H, Tokita S, Ono K, Tamura R. J. Org. Chem., 2008, 73:7748.;
(c) Tsue H, Ono K, Tokita S, Ishibashi K, Matsui K, Takahashi H, Miyata K, Takahashi D, Tamura R. Org. Lett., 2011, 13:490.;
(d) Tsue H, Takahash H, Ishibashi K, Inoue R, Shimizu S, Takahashi D, Tamura R. CrystEngComm, 2012, 14:1021.
[40] (a) Zhao W J, Wang W J, Chang H, Cui S W, Hu K, He L J, Lu K, Liu J X, Wu Y J, Qian J, Zhang S S. J. Chromatogr. A, 2012, 1251:74.;
(b) Zhang W F, Zhang Y H, Jiang Q, Zhao W J, Yu A J, Chang H, Lu X M, Xie F W, Ye B X, Zhang S S. Anal. Chem., 2016, 88:10523.
[41] (a) Uchida N, Kuwabara J, Taketosh A, Kanbara T. J. Org. Chem.,2012, 77:10631.;
(b) Uchida N, Taketoshi A, Kuwabara J, Yamamoto T, Inoue Y, Watanabe Y, Kanbara T. Org. Lett., 2010, 12:5242.
[42] He Q, Ao Y F, Huang Z T, Wang D X. Angew. Chem. Int. Ed., 2015, 54:11785.
[43] (a) Ma M L, Li X Y, Wen K. J. Am. Chem. Soc., 2009, 131:8338.;
(b) Li X Y, Liu L Q, Ma M L, Zhao X L, Wen K. Dalton Trans., 2010, 39:8646.
[44] (a) Wang H X, Meng Z, Xiang J F, Xia Y X, Sun Y, Hu S Z, Chen H, Yao J, Chen C F. Chem. Sci., 2016, 7:469.;
(b) Liu H, Hu W J, Liu Y A, Li J S, Jiang B, Wen K. J. Org. Chem., 2016, 81:6457.
[45] Guo Q H, Fu Z D, Zhao L, Wang M X. Angew. Chem. Int. Ed., 2014, 53:13548.
[46] Lu Y, Fu Z D, Guo G H, Wang M X. Org. Lett., 2017, 19:1590.
[47] Guo Q H, Zhao L, Wang M X. Chem. Eur. J., 2016, 22:6947.
[48] Fu Z D, Guo Q H, Zhang L, Wang D X, Wang M X. Org. Lett., 2016, 18:2668.
[49] Wu Z C, Guo G H, Wang M X. Angew. Chem. Int. Ed., 2017, 56:7151.
[50] Franke J, Vögtle F. Tetrahedron Lett., 1984, 25:3445.
[51] Takeuchi D, Asano I, Osakada K. J. Org. Chem., 2006, 71:8614.
[52] Kaplan K L, Reents W D. Tetrahedron Lett., 1982, 23:373.
[53] Sergeev V A, Nedel'kin V I, Astankov A V, Nikiforov A V, Alov E M, Moskvichev Y A. Bull. Acad. Sci. USSR, 1990, 39:763.
[54] Tsuchida E, Miyatake K, Yamamoto K, Hay A S. Macromolecules, 1998, 31:6469.
[55] (a) Baxter I, Ben-Haida A, Colquhoun H M, Hodge P, Kohnke F H, Williams D J. Chem. Eur. J., 2000, 6:4285.;
(b) Ben-Haida A, Colquhoun H M, Hodge P, Raftery J, White A J P, Williams D J. Org. Biomol. Chem., 2009, 7:5229.
[56] Ren W S, Zhao L, Wang M X. Org. Lett., 2016, 18:3126.
[57] Ren W S, Wang M X. Supramol. Chem., 2018, 30(7):583.
[58] Guo Q H, Zhao L, Wang M X. Angew. Chem. Int. Ed., 2015, 54:8386.
[59] Zhao M Y, Wang D X, Wang M X. J. Org. Chem., 2018, 83:1502.
[60] Zhao M Y, Guo Q H, Wang M X. Org. Chem. Front., 2018, 5:760.
[1] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[2] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[3] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[4] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[5] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[6] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[7] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[8] Wang Hui, Ponmani Jeyakkumar, Sangaraiah Nagarajan, Meng Jiangping, Zhou Chenghe. Current Researches and Applications of Perylene Compounds [J]. Progress in Chemistry, 2015, 27(6): 704-743.
[9] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
[10] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[11] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[12] Xu Liang, Li Yongjun, Li Yuliang. Preparation and Application of Supramolecular Functional Materials Based on π System [J]. Progress in Chemistry, 2014, 26(04): 487-501.
[13] Zhao Chuanqi, Qu Xiaogang*. Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes [J]. Progress in Chemistry, 2013, 25(04): 539-544.
[14] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[15] Liu Zhicheng, Wang Hong, Yang Rui, Li Wei. Synthesis and Application of Phosphorous-Containing Calixarenes and Their Complexes [J]. Progress in Chemistry, 2011, 23(8): 1665-1682.