中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 902-912 DOI: 10.7536/PC171118 Previous Articles   Next Articles

• Review •

Anion-Naphthalenediimide Interactions and Their Applications

Lianxun Gao, Chuanqing Kang*, Lianxun Gao   

  1. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21574126).
PDF ( 666 ) Cited
Export

EndNote

Ris

BibTeX

Electron-poor naphthalenediimides(NDIs) with large quadrupole moments and strong π-acidity have been extensively studied as ideal models to gain deep insights into anion-π interactions. The development of anion-NDI systems have attracted considerable attention with efforts on mechanisms and applications of the systems. Anion-to-NDI electron transfer induced by anion-π interactions in the system usually results in colorimetric change or the formation of characteristic spectra bands, which have become a convenient and efficient tactic for the design of anion sensors. Particularly, NDIs have shown distinct advantages in recognition of strong Lewis basic anions with the formation of easily identified UV bands corresponding to radical anions of NDIs. The paper surveys researches on anion-DNI interactions in recent years. The paper firstly presents the interactions and structures of anion-NDI systems, then extensively reviews the applications of anion-NDI interations in anion recognition, enantiomer recognition, organocatalysis, and construction of anion channel. The interactions of NDI with neutral molecules based on lone electron pair-π interactions are also included. The functional relevance of anion-π interactions is demonstrated upon the discussion of the developments and wide applications of anion-NDI systems. Finally, this paper summarizes the strategies and challenges in development of application-oriented anion-NDI systems and draws perspectives of anion-NDI interactions in fundamental studies and wide applications.
Contents
1 Introduction
2 Anion-NDI interactions
3 Applications of anion-NDI interactions in molecular recognition
3.1 Anion recognition and sensing
3.2 Recogntion of neutral molecules
3.3 pH responsiveness based on lone pair-NDI interactions
3.4 NDIs used for molecular electronics material
3.5 Enantiomer recognition
4 Applications of anion-NDI interactions in organocatalysis
5 Construction of anion channel with anion-NDI system
6 Conclusion and outlook

CLC Number: 

[1] 沈家骢(Shen J C), 孙俊奇(Sun J Q).中国科学院院刊(Bull. Chin. Acad. Sci.), 2004, 19(6):420.
[2] Seiffert S, Sprakel J. Chem. Soc. Rev., 2012, 41(2):909.
[3] Li S L, Xiao T, Lin C, Wang L. Chem. Soc. Rev., 2012, 41(18):5950.
[4] Brunsveld L, Folmer B, Meijer E, Sijbesma R. Chem. Rev., 2001, 101(12):4071.
[5] 沈家骢(Shen J C), 张希(Zhang X). 科技导报(Sci. Technol. Rev.), 1994, 12(9410):6.
[6] Mathew S, Paul G, Shivasankar K, Choudhury A, Rao C N R. J. Mol. Struct., 2002, 641(2):263.
[7] Beale T M, Chudzinski M G, Sarwar M G, Taylor M S. Chem. Soc. Rev., 2013, 42(4):1667.
[8] Kaliyappan T, Kannan P. Prog. Polym. Sci., 2000, 25(3):343.
[9] Das A, Ghosh S. Angew. Chem. Int. Ed., 2014, 53(8):2038.
[10] Hayes W, Greenland B W. Supramolecular Polymer Networks and Gels. Springer. 2015. 143.
[11] Meyer E A, Castellano R K, Diederich F. Angew. Chem. Int. Ed., 2003, 42(11):1210.
[12] Kumpf R A, Dougherty D A. Science, 1993, 261(5129):1708.
[13] Tedesco M M, Ghebremariam B, Sakai N, Matile S. Angew. Chem. Int. Ed., 1999, 38(4):540.
[14] Dougherty D A. Acc. Chem. Res., 2012, 46(4):885.
[15] Mahadevi A S, Sastry G N. Chem. Rev., 2012, 113(3):2100.
[16] Mccurdy A, Jimenez L, Stauffer D A, Dougherty D A. J. Am. Chem. Soc., 1992, 114(26):10314.
[17] Lin S, Jacobsen E N. Nat. Chem., 2012, 4(10):817.
[18] Chifotides H T, Dunbar K R. Acc. Chem. Res., 2013, 46(4):894.
[19] Dawson R E, Hennig A, Weimann D P, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley C A, Matile S. Nat. Chem., 2010, 2(7):533.
[20] Zhao Y, Beuchat C, Domoto Y, Gajewy J, Wilson A, Mareda J, Sakai N, Matile S. J. Am. Chem. Soc., 2014, 136(5):2101.
[21] Bhosale S V, Bhosale S V, Kalyankar M B, Langford S J. Org. Lett., 2009, 11(23):5418.
[22] Guha S, Goodson F S, Corson L J, Saha S. J. Am. Chem. Soc., 2012, 134(33):13679.
[23] Gorteau V, Bollot G, Mareda J, Perez-Velasco A, Matile S. J. Am. Chem. Soc., 2006, 128(46):14788.
[24] Guha S, Saha S. J. Am. Chem. Soc., 2010, 132(50):17674.
[25] Guha S, Goodson F S, Roy S, Corson L J, Gravenmier C A, Saha S. J. Am. Chem. Soc., 2011, 133(39):15256.
[26] Guha S, Goodson F S, Clark R J, Saha S. CrystEngComm, 2012, 14(4):1213.
[27] Li Y, Zhao Y, Jiang R, Liu H, Li Y. Inorg. Chem. Front., 2014, 1(9):661.
[28] Gorteau V, Bollot G, Mareda J, Matile S. Org. Biomol. Chem., 2007, 5(18):3000.
[29] Sakai N, Mareda J, Matile S. Acc. Chem. Res., 2005, 38(2):79.
[30] Zhao Y, Cotelle Y, Avestro A J, Sakai N, Matile S. J. Am. Chem. Soc., 2015, 137(36):11582.
[31] Kobaisi M A, Bhosale S V, Latham K, Raynor A M. Chem. Rev., 2016, 116(19):11685
[32] Takeuchi M, Shioya T, Swager T M. Angew. Chem. Int. Ed., 2001, 113(18):3476.
[33] Kang S O, Llinares J M, Powell D, Vandervelde D, Bowman-James K. J. Am. Chem. Soc., 2003, 125(34):10152.
[34] Sokkalingam P, Kee S, Kim Y, Kim S, Lee P H, Lee C. Org. Lett., 2012, 14(24):6234.
[35] Kim S Y, Park J, Koh M, Park S B, Hong J I. Chem. Commun., 2009,(31):4735.
[36] Garau C, Quinonero D, Frontera A, Ballester P, Costa A, Deya P M. J. Phys. Chem. A, 2005, 109(41):9341.
[37] Bobe S R, Bhosale S V, Jones L, Puyad A L, Raynor A M, Bhosale S V. Tetrahedron Lett., 2015, 56(33):4762.
[38] Rananaware A, Samanta M, Bhosale R S, Kobaisi M A, Roy B, Bheemireddy V, Bhosale S V, Bandyopadhyay S, Bhosale S V. Sci. Rep., 2016, 6:22928.
[39] Nath J K, Baruah J B. New J. Chem., 2013, 37(5):1509.
[40] Yan J, Kang C, Ma X, Du Z, Bian Z, Jin R, Gao L. Asian J. Org. Chem., 2017, 6:1531.
[41] Luo H, Liu Z, Cai Z, Wu L, Zhang G, Liu C, Zhang D. Chin. J. Chem., 2012, 30(7):1453.
[42] Shen L, Lu X, Tian H, Zhu W. Macromolecules, 2011, 44(14):5612.
[43] Ghule N V, Kharat K, Bhosale R S, Puyad A L, Bhosale S V, Bhosale S V. RSC Adv., 2016, 6(2):1644.
[44] Katz E. Molecular and Supramolecular Information Processing:from Molecular Switches to Logic Systems. John Wiley & Sons, 2013.
[45] Gundlach D J. Nat. Mater., 2007, 6(3):173.
[46] Lukas A S, Bushard P J, Wasielewski M R. J. Am. Chem. Soc., 2001, 123(10):2440.
[47] Jiang W, Han M, Zhang H Y, Zhang Z J, Liu Y. Chem. Eur. J., 2009, 15(38):9938.
[48] Ajayakumar M R, Hundal G, Mukhopadhyay P. Chem. Commun., 2013, 49(70):7684.
[49] Yan J, Kang C, Bian Z, Ma X, Jin R, Du Z, Gao L. Chem. Eur. J., 2017, 23(24):5824.
[50] Yan J, Kang C, Bian Z, Jin R, Ma X, Du Z, Yao H, Gao L. Chem. Asian. J., 2017, 12(8):841.
[51] Mascal M, Armstrong A, Bartberger M D. J. Am. Chem. Soc., 2002, 124(22):6274.
[52] Perez V A, Gorteau V, Matile S. Angew. Chem. Int. Ed., 2008, 120(5):935.
[53] Shaller A D, Wang W, Gan H, Li A D. Angew. Chem. Int. Ed., 2008, 120(40):7819.
[54] Wright E M, Diamond J M. Physiol. Rev., 1977, 57(1):109.
[55] Miller C. J. Gen. Physiol., 1999, 113(6):783.
[1] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[2] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[3] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[4] Hui-Juan Wang, Yu Liu. Molecular Binding and Assembly of Sulfonated Crown Ethers [J]. Progress in Chemistry, 2020, 32(11): 1651-1664.
[5] Wanru Zhao, Xin Hu, Ning Zhu, Zheng Fang, Kai Guo. Ionic Polymerizations in Continuous Flow [J]. Progress in Chemistry, 2018, 30(9): 1330-1340.
[6] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[7] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[8] Jinshuai Zhang, Fengli Yu, Bing Yuan, Congxia Xie, Shitao Yu. Solvent Effects on Reaction-Controlled Phase-Transfer Catalysis [J]. Progress in Chemistry, 2018, 30(2/3): 304-313.
[9] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[10] Xiong Xingquan, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng. Highly Efficient Synthesis of Amides [J]. Progress in Chemistry, 2016, 28(4): 497-506.
[11] Huang Wenzhong, Zhan Tianguang, Lin Feng, Zhao Xin. Recent Progress in the Construction and Regulation of Supramolecular Polymers Based on Host-Guest Interactions [J]. Progress in Chemistry, 2016, 28(2/3): 165-183.
[12] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[13] Wu Hongwei, Chen Yayun, Rao Caihui, Liu Chuanxiang*. Anion Receptors Based on CH Donor Group [J]. Progress in Chemistry, 2016, 28(10): 1501-1514.
[14] Zhong Keli, Guo Baofeng, Zhou Xue, Cai Kedi, Tang Lijun, Jin Longyi. Ionics Fluorescent Chemsensor Based on Pyrene [J]. Progress in Chemistry, 2015, 27(9): 1230-1239.
[15] Wang Hui, Ponmani Jeyakkumar, Sangaraiah Nagarajan, Meng Jiangping, Zhou Chenghe. Current Researches and Applications of Perylene Compounds [J]. Progress in Chemistry, 2015, 27(6): 704-743.