中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 539-544 DOI: 10.7536/PC121055 Previous Articles   Next Articles

• Review •

Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes

Zhao Chuanqi, Qu Xiaogang*   

  1. Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
PDF ( 807 ) Cited
Export

EndNote

Ris

BibTeX

There is great interest in design and synthesis of small molecules which selectively target specific genes to inhibit biological functions. Among these studies, chiral DNA recognition has been received much attention because more evidences have shown that conversions of the chirality and diverse conformations of DNA are involved in a series of important life events. In addition, chiral molecular recognition of DNA is important for rational drug design and developing structural probes of DNA conformation. Over the past few decades, considerable attention has focused on the design of DNA binding chiral agents, especially B-DNA, Z-DNA and G-quadruplex DNA binding agents. Rare-earth compounds, due to a unique 4fn electronic configuration, have been widely used as probes in luminescent resonance energy transfer for bioassays and as reagents for diagnosis in magnetic resonance imaging. As chemical nucleases, rare-earth complexes have also shown a high efficiency to hydrolyze DNA and RNA without redox chemistry. Recently, there is great interest in the design and synthesis of chiral rare-earth complexes which selectively target specific DNA. Excitedly, some interesting results have been reported. This review summarizes the current progress in chiral rare-earth complexes binding to nucleic acids and their chiral selectivity.

Contents
1 Introduction
2 Synthesis of rare-earth chiral compounds
3 Recognition of rare-earth chiral compounds to duplex DNA
4 Recognition of rare-earth chiral compounds to single strand DNA and quadruplex DNA
5 Perspective

CLC Number: 

[1] Barton J K, Dannenberg J J, Raphael A L. J. Am. Chem. Soc., 1982, 104: 4967-4969
[2] Barton J K. Science, 1986, 233: 727-734
[3] Qu X G, Trent J O, Fokt I, Priebe W, Chaires J B. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 12032-12037
[4] Yu H J, Wang X H, Fu M L, Ren J S, Qu X G. Nucleic Acids Res., 2008, 36: 5695-5703
[5] Shinohara K I, Sannohe Y, Kaieda S, Tanaka K I, Osuga H, Tahara H, Xu Y, Kawase T, Bando T, Sugiyama H. J. Am. Chem. Soc., 2010, 132: 3778-3782
[6] Xu Y, Zhang Y X, Sugiyama H, Umano T, Osuga H, Tanaka K. J. Am. Chem. Soc., 2004, 126: 6566-6567
[7] Yu H, Zhao C, Chen Y, Fu M, Ren J, Qu X. J. Med. Chem., 2009, 53: 492-498
[8] Zhao C, Geng J, Feng L, Ren J, Qu X. Chem. Eur. J., 2011, 17: 8209-8215
[9] Muller B C, Raphael A L, Barton J K. Proc. Natl Acad. Sci., U. S. A., 1987, 84: 1764-1768
[10] Zeglis B M, Pierre V C, Barton J K. Chem. Commun., 2007, 4565-4579
[11] Schatzschneider U, Barton J K. J. Am. Chem. Soc., 2004, 126: 8630-8631
[12] Bunzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048-1077
[13] Tsukube H, Shinoda S. Chem. Rev., 2002, 102: 2389-2403
[14] Lo K K W, Choi A W T, Law W H T. Dalton Trans., 2012, 41: 6021-6047
[15] Xu Y, Suzuki Y, Loennberg T, Komiyama M. J. Am. Chem. Soc., 2009, 131: 2871-2874
[16] Di Bari L, Salvadori P. Coord. Chem. Rev., 2005, 249: 2854-2879
[17] Parker D, Dickins R S, Puschmann H, Crossland C, Howard J A K. Chem. Rev., 2002, 102: 1977-2010
[18] Muller G. Dalton Trans., 2009, 9692-9707
[19] Govenlock L J, Mathieu C E, Maupin C L, Parker D, Riehl J P, Siligardi G, Williams J A G. Chem. Commun., 1999, 1699-1700
[20] Frias J C, Bobba G, Cann M J, Hutchison C J, Parker D. Org. Biomol. Chem., 2003, 1: 905-907
[21] Bobba G, Bretonniere Y, Frias J C, Parker D. Org. Biomol. Chem., 2003, 1: 1870-1872
[22] Montgomery C P, Murray B S, New E J, Pal R, Parker D. Acc. Chem. Res., 2009, 42: 925-937
[23] Beeby A, Dickins R S, FitzGerald S, Govenlock L J, Maupin C L, Parker D, Riehl J P, Siligardi G, Williams J A G. Chem. Commun., 2000, 1183-1184
[24] Ha S C, Lowenhaupt K, Rich A, Kim Y G, Kim K K. Nature, 2005, 437: 1183-1186
[25] Zhang H Y, Yu H J, Ren J S, Qu X G. Biophys. J., 2006, 90: 3203-3207
[26] Geng J, Zhao C, Ren J, Qu X. Chem. Commun., 2010, 7187-7189
[27] Geng J, Li M, Ren J, Wang E, Qu X. Angew. Chem. Int. Ed., 2011, 50: 4184-4188
[28] Krezel A, Lisowski J. J. Inorg. Biochem., 2012, 107: 1-5
[29] Meistermann I, Moreno V, Prieto M J, Moldrheim E, Sletten E, Khalid S, Rodger P M, Peberdy J C, Isaac C J, Rodger A, Hannon M J. Proc. Natl Acad. Sci. U. S. A., 2002, 99: 5069-5074
[30] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1993, 32: 2573-2584
[31] Zhao C, Ren J, Gregoliński J, Lisowski J, Qu X. Nucleic Acids Res., 2012, 40: 8186-8196
[32] Gregoli Dn' ski J, Starynowicz P, Hua K T, Lunkley J L, Muller G, Lisowski J. J. Am. Chem. Soc., 2008, 130: 17761-17773
[33] Gregoliński J, Lisowski J. Angew. Chem. Int. Ed., 2008, 47: 10013-10013
[34] Zhang H Y, Yu H Y, Xu H X, Ren J S, Qu X G. Polyhedron, 2007, 26: 5250-5256
[35] Zhang H Y, Yu H J, Ren J S, Qu X G. FEBS Letters, 2006, 580: 3726-3730
[36] Xu H X, Zhang H Y, Qu X G. J. Inorg. Biochem., 2006, 100: 1646-1652

[1] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[2] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[3] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[4] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[5] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[6] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[7] Wang Hui, Ponmani Jeyakkumar, Sangaraiah Nagarajan, Meng Jiangping, Zhou Chenghe. Current Researches and Applications of Perylene Compounds [J]. Progress in Chemistry, 2015, 27(6): 704-743.
[8] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
[9] Liu Baoquan, Liu Qiang, Zhang Ji, Fan Shengdi, Yu Xiaoqi. Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes [J]. Progress in Chemistry, 2013, 25(08): 1237-1245.
[10] Wan Decheng, Jin Ming, Pu Hongting. Supramolecular Fuzzy Recognition [J]. Progress in Chemistry, 2011, 23(10): 2095-2102.
[11] Zhang Tao, Chen Fan, Gai Qingqing, Qu Feng, Zhang Yukui. Ionic Liquids and Protein/Nucleic Acid Interaction [J]. Progress in Chemistry, 2011, 23(10): 2132-2139.
[12] . Inorganic Ions and Small Molecular Recognition Based on Functional Modification Quantum Dots [J]. Progress in Chemistry, 2010, 22(06): 1077-1085.
[13] . Molecular Imprinting Technology Based on Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 888-897.
[14] . Click Chemistry and Functional Organic/ Polymeric Materials [J]. Progress in Chemistry, 2010, 22(0203): 406-416.
[15] Kan Xianwen Yin Yuxin Geng Zhirong Wang Zhilin. The Preparation and Applications of Molecularly Imprinted Polymers Based on Silica Materials [J]. Progress in Chemistry, 2010, 22(01): 107-112.