中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 737-752 DOI: 10.7536/PC171110 Previous Articles   Next Articles

• Review •

Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products

Yuxia Gao1,2, Yun Liang1, Jun Hu3*, Yong Ju1*   

  1. 1. Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. College of Science, China Agricultural University, Beijing 100094, China;
    3. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21472108,21604085,21772112),the National Key R&D Program of China (No.2017YFD0200302),and the Jilin Science Foundation for Youths (No.20160520135JH).
PDF ( 1144 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular chirality, one of the most fascinating phenomena in nature and life, can be generated from orderly molecular self-assembly under non-covalent interactions, and plays an important role in life science, pharmaceutical chemistry, and materials science. Natural products, which are abundant in nature, have attracted immense attention in supramolecular chirality due to their unique stereostructures and multiple chiral centers. By transferring and magnifying the molecular chirality into supramolecular assemblies, natural products have been regarded as one of the ideal building blocks in fabricating supramolecular chiral nanostructures. The study of chiral assembly behavior of natural products will not only expand their applications in supramolecular chemistry, but also help us better understand the chiral phenomena in nature and life. In this review, recent developments of supramolecular chiral self-assembly based on small molecular natural products, such as steroids, triterpenoids, amino acids, sugars, and so on, are summarized and their prospects are discussed.
Contents
1 Introduction
2 Chiral self-assembly based on small molecular natural products
2.1 Chiral self-assembly of steroids
2.2 Chiral self-assembly of triterpenoids
2.3 Chiral self-assembly of amino acids
2.4 Chiral self-assembly of sugars
2.5 Chiral self-assembly of other natural products
3 Conclusion

CLC Number: 

[1] Smith D K. Chem. Soc. Rev., 2009, 38:684.
[2] Crassous J. Chem. Soc. Rev., 2009, 38:830.
[3] 袁菁(Yuan J), 张莉(Zhang L), 黄昕(Huang X), 姜思光(Jiang S G), 刘鸣华(Liu M H). 化学进展(Progress in Chemistry), 2005, 17(5):780.
[4] Duan P F, Cao H, Zhang L, Liu M H. Soft Matter, 2014, 10:5428.
[5] 莽朝永(Mang C Y), 赵霞(Zhao X), 刘彩萍(Liu C P), 吴克琛(Wu K C). 化学学报(Acta Chimica Sinica), 2008, 66(2):195.
[6] 靳清贤(Jin Q X), 李晶(Li J), 李孝刚(Li X G), 张莉(Zhang L), 方少明(Fang S M), 刘鸣华(Liu M H). 化学进展(Progress in Chemistry), 2014, 26(6):919.
[7] Paik P, Gedanken A, Mastai Y. ACS Appl. Mater. Inter., 2009, 1:1834.
[8] Cao H, Zhu X F, Liu M H. Angew. Chem. Int. Ed., 2013, 52:4122.
[9] 徐括喜(Xu K X), 刘顺英(Liu S Y), 何永炳(He Y B), 秦海娟(Qin H J), 卿光焱(Qing G Y), 胡翎(Hu L). 化学学报(Acta Chimica Sinica), 2006, 64(21):2205.
[10] Liu C X, Jin Q X, Lv K, Zhang L, Liu M H. Chem. Commun., 2014, 50:3702.
[11] Miao W G, Yang D, Liu M H. Chem. Eur. J., 2015, 21:7562.
[12] Stepanenko V, Li X Q, Gershberg J, Würthner, F. Chem. Eur. J., 2013, 19:4176.
[13] George S J, Tomovi? ?, Schenning A P H J, Meijer E W. Chem. Commun., 2011, 47:3451.
[14] George S J, Tomovi? ?, Smulders M M J, de Greef T F A, Leclère P E L G, Meijer E W, Schenning A P H J. Angew. Chem. Int. Ed., 2007, 46:8206.
[15] Shen Z C, Wang T Y, Liu M H. Angew. Chem. Int. Ed., 2014, 126:13642.
[16] Hu J, Gao L, Zhu Y L, Wang P Y, Lin Y, Sun Z Y, Yang S, Wang Q. Chem. Eur. J., 2017, 23:1422.
[17] Song B, Liu B, Jin Y Z, He X X, Tang D T, Wu G L, Yin S C. Nanoscale, 2015, 7:930.
[18] Brizard A, Aimé C, Labrot T, Huc I, Berthier D, Artzner F, Desbat B, Oda R. J. Am. Chem. Soc., 2007, 129:3754.
[19] Gopal A, Hifsudheen M, Furumi S, Takeuchi M, Ajayaghosh A. Angew. Chem. Int. Ed., 2012, 51:10505.
[20] 黄磊(Huang L), 黄通(Huang T), 白永平(Bai Y P), 周永丰(Zhou Y F). 化学学报(Acta Chimica Sinica), 2016, 74(12):990.
[21] Barclay T G, Constantopoulos K, Matisons J. Chem. Rev., 2014, 114:10217.
[22] Du X W, Zhou J, Shi J F, Xu B. Chem. Rev., 2015, 115:13165.
[23] Zhang L, Wang T Y, Shen Z C, Liu M H. Adv. Mater., 2016, 28:1044.
[24] 高玉霞(Gao Y X), 胡君(Hu J), 巨勇(Ju Y). 化学学报(Acta Chimica Sinica), 2016, 74(4):312.
[25] 卢金荣(Lu J R), 巨勇(Ju Y).有机化学(Chinese Journal of Organic Chemistry), 2013, 33(3):469.
[26] 卢金荣(Lu J R), 巨勇(Ju Y).化学进展(Progress in Chemistry), 2016, 28(2/3):260.
[27] Hosta-Rigau L, Zhang Y, Teo B M, Postma A, Städler B. Nanoscale, 2013, 5:89.
[28] Xu F M, Wang H B, Zhao J, Liu X S, Li D D, Chen C J, Ji J. Macromolecules, 2013, 46:4235.
[29] 胡方振(Hu F Z), 陈圣典(Chen S D), 李慧(Li H), 孙景景(Sun J J), 盛瑞隆(Sheng R L), 罗挺(Luo T), 曹阿民(Cao A M). 化学学报(Acta Chimica Sinica), 2013, 71(3):351.
[30] 薛翠花(Xue C H), 牟其明(Mu Q M), 陈淑华(Chen S H). 化学学报(Acta Chimica Sinica), 2002, 60(2):355.
[31] Ono Y, Nakashima K, Sano M, Hojo J, Shinkai S. J. Mater. Chem., 2001, 11:2412.
[32] Ajayaghosh A, Vijayakumar C, Varghese R, George S J. Angew. Chem. Int. Ed., 2006, 45:456.
[33] Vedhanarayanan B, Nair V S, Nair V C, Ajayaghosh A. Angew. Chem. Int. Ed., 2016, 55:10345.
[34] Tu T, Fang W W, Bao X L, Li X B, Dötz K H. Angew. Chem. Int. Ed., 2011, 50:6601.
[35] Mao Y Y, Liu K Y, Meng L Y, Chen L, Chen L M, Yi T. Soft Matter, 2014, 10:7615.
[36] Sánchez-Ferrer A, Adamcik J, Mezzenga R. Soft Matter, 2012, 8:149.
[37] 李伟娜(Li W N).清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2013.
[38] 张荷兰(Zhang H L), 彭军霞(Peng J X), 刘凯强(Liu K Q), 房喻(Fang Y). 化学进展(Progress in Chemistry), 2011, 23(8):1591.
[39] Schefer L, Sánchez-Ferrer A, Adamcik J, Mezzenga R. Langmuir, 2012, 28:5999.
[40] Ramanathan N, Currie A L, Colvin J R. Nature, 1961, 190:779.
[41] Terech P, Talmon Y. Langmuir, 2002, 18:7240.
[42] Jean B, Oss-Romen L, Terech P, Talmon Y. Adv. Mater., 2005, 17:728.
[43] Zhang X J, Zou J H, Tamhane K, Kobzeff F F, Fang J Y. Small, 2010, 6:217.
[44] Tamhane K, Zhang X J, Zou J H, Fang J Y. Soft Matter, 2010, 6:1224.
[45] Zhang X J, Tamhane K, Bera T, Fang J. J. Mater. Chem., 2011, 21:13973.
[46] Qiao Y, Lin Y Y, Wang Y J, Yang Z Y, Liu J, Zhou J, Yan Y, Huang J B. Nano Lett., 2009, 9:4500.
[47] Travaglini L, D'Annibale A, Schillén K, Olsson U, Sennato S, Pavel N V, Galantini L. Chem. Commun., 2012, 48:12011.
[48] Li Y, Li G T, Wang X Y, Li W N, Su Z X, Zhang Y H, Ju Y. Chem. Eur. J., 2009, 15:6399.
[49] Hu J, Zhang M, Ju Y. Soft Matter, 2009, 5:4971.
[50] Hu J, Wu J D, Wang Q, Ju Y. Beilstein J. Org. Chem., 2013, 9:2877.
[51] Bag B G, Dinda S K, Dey P P, Mallia A, Weiss R G. Langmuir, 2009, 25:8663.
[52] Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Angew. Chem. Int. Ed., 2015, 54:5408.
[53] Gao Y X, Hao J, Wu J D, Zhang X, Hu J, Ju Y. Langmuir, 2016, 32:1685.
[54] Gao Y X, Hao J, Wu J D, Zhang X, Hu J, Ju Y. Nanoscale, 2015, 7:13568.
[55] Gao Y X, Hao J, Wu J D, Li Y, Lin Y, Hu J, Ju Y. Soft Matter, 2016, 12:8979.
[56] Duan P F, Zhu X F, Liu M H. Chem. Commun., 2011, 47:5569.
[57] Zhang L, Liu C X, Jin Q X, Zhu X F, Liu M H. Soft Matter, 2013, 9:7966.
[58] Chen C F, Wang T Y, Fu Y Z, Liu M H. Chem. Commun., 2016, 52:1381.
[59] Wang X F, Duan P F, Liu M H. Chem. Commun., 2012, 48:7501.
[60] Zhou X Q, Jin Q X, Zhang L, Shen Z C, Jiang L, Liu M H. Small, 2016, 12:4743.
[61] Wang X F, Liu M H. Chem. Eur. J., 2014, 20:10110.
[62] Lv K, Zhang L, Liu M H. Langmuir, 2014, 30:9295.
[63] Wang X F, Duan P F, Liu M H. Chem. Eur. J., 2013, 19:16072.
[64] Jiang J, Wang T Y, Liu M H. Chem. Commun., 2010, 46:7178.
[65] Jiang J, Meng Y, Zhang L, Liu M H. J. Am. Chem. Soc., 2016, 138:15629.
[66] Deng M, Zhang L, Jiang Y Q, Liu M H. Angew. Chem. Int. Ed., 2016, 55:15062.
[67] Ziserman L, Lee H Y, Raghavan S R, Mor A, Danino D. J. Am. Chem. Soc., 2011, 133:2511.
[68] Wu X J, Ji S J, Li Y, Li B Z, Zhu X L, Hanabusa K, Yang Y G. J. Am. Chem. Soc., 2009, 131:5986.
[69] Zhang C Y, Wang S B, Huo H J, Li Y, Li B Z, Yang Y G. Mater. Lett., 2012, 88:23.
[70] Zhang C Y, Huo H J, Li Y, Li B Z, Yang Y G. Mater. Lett., 2013, 102-103:50.
[71] Zhang C Y, Wang S B, Huo H J, Huang Z B, Li Y, Li B Z, Yang Y G. Chem. Asian. J., 2013, 8:709.
[72] Levi G, Scolnik Y, Mastai Y. ACS Appl. Mater. Inter., 2016, 8:23356.
[73] Liu G F, Zhu L Y, Ji W, Feng C L, Wei Z X. Angew. Chem. Int. Ed., 2016, 55:2411.
[74] Wang Y F, Qi W, Huang R L, Yang X J, Wang M F, Su R X, He Z M. J. Am. Chem. Soc., 2015, 137:7869.
[75] Lin Y Y, Pashuck E T, Thomas M R, Amdursky N, Wang S T, Chow L W, Stevens M. M. Angew. Chem. Int. Ed., 2017, 56:2361.
[76] Chabre Y M, Roy R. Chem. Soc. Rev., 2013, 42:4657.
[77] Wang K R, Han D, Cao G J, Li X L. Chem. Asian J., 2015, 10:1204.
[78] 王克让(Wang K R). 化学进展(Progress in Chemistry), 2015, 27(6):775.
[79] Hu J C, Kuang W F, Deng K, Zou W J, Huang Y W, Wei Z X, Faul C F J. Adv. Funct. Mater., 2012, 22:4149.
[80] Yang Y, Zhang Y J, Wei Z X. Adv. Mater., 2013, 25:6039.
[81] Huang Y W, Hu J C, Kuang W F, Wei Z X, Faul C F J. Chem. Commun., 2011, 47:5554.
[82] Sun K, Xiao C Y, Liu C M, Fu W X, Wang Z H, Li Z B. Langmuir, 2014, 30:11040.
[83] Wang K R, An H W, Wu L, Zhang J C, Li X L. Chem. Commun., 2012, 48:5644.
[84] Ogawa Y, Yoshiyama C, Kitaoka T. Langmuir, 2012, 28:4404.
[85] Cui J X, Liu A H, Guan Y, Zheng J, Shen Z H, Wan X H. Langmuir, 2010, 26:3615.
[86] Clemente M J, Fitremann J, Mauzac M, Serrano J L, Oriol L. Langmuir, 2011, 27:15236.
[87] Clemente M J, Romero P, Serrano J L, Fitremann J, Oriol L. Chem. Mater., 2012, 24:3847.
[88] Jung J H, Do Y, Lee Y A, Shimizu T. Chem. Eur. J., 2005, 11:5538.
[89] Li J J, Fan K Q, Guan X D, Yu Y Z, Song J. Langmuir, 2014, 30:13422.
[90] Oda K, Huc I, Candau S J. Angew. Chem. Int. Ed., 1998, 37:2689.
[91] Delclos T, Aimé C, Pouget E, Brizard A, Huc I, Delville M H, Oda R. Nano Lett., 2008, 8:1929.
[92] Das R K, Zouani O F, Labrugère C, Oda R, Durrieu M C. ACS Nano, 2013, 7:3351.
[93] Yoshi Y, Hoshino N, Tekeda T, Moritomo H, Kawamata J, Nakamura T, Akutagawa T. Chem. Eur. J., 2014, 20:16279.
[94] Ma M F, Xing P Y, Xu S G, Li S Y, Chu X X, Hao A Y. RSC Adv., 2014, 4:42372.
[95] Saha A, Manna S, Nandi A K. Langmuir, 2007, 23:13126.
[96] Bairi P, Chakraborty P, Mondal S, Roy B, Nandi A K. Soft Matter, 2014, 10:5114.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[9] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[10] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[11] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[12] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[13] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[14] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[15] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.