中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (10): 1448-1458 DOI: 10.7536/PC150427 Previous Articles   Next Articles

• Review and comments •

Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis

Gui Zhen1, Yan Feng1*, Li Jinchang1, Ge Mengyuan1, Ju Huangxian2   

  1. 1. Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, China;
    2. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21475063), the Special Project in Clinic Medicine of Jiangsu Province (No.BL2013036), and the Medicine Leading Talents of Jiangsu Province (No.LJ201131).
PDF ( 1340 ) Cited
Export

EndNote

Ris

BibTeX

Molecular beacons are stem-loop hairpin-structured fluorescence probes with a fluorescent dye at 5' end and a fluorescence quencher at 3' end. When a target complementary sequence is absent, the molecular beacons do not fluoresce, because the formation of the hairpin structure brings the quencher and fluorophore into close proximity, whereby fluorescence is quenched with high efficiency. When a target molecule is present, the hybridization between the target and the loop sequence of the molecular beacon results in the spatial separation of the fluorophore and quencher, which opens the stem-loop structure of molecular beacons to emit fluorescence. Locked nucleic acid is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. It possesses excellent binding affinity to nucleic acid, high biostability and resists to nuclease degradation. Due to the excellent sensitivity and high specificity, the combination of the molecular beacons and locked nucleic acid has aroused wide concern. In this review, we intensively summarize the structure, function, design essentials, current research topics and some important progress. In addition, we also discuss the applications, potential problems and perspective of locked nucleic acid molecular beacons in molecular recognition and bioanalysis.

Contents
1 Introduction
2 Structure and function of molecular beacons
3 Structure and properties of locked nucleic acid
4 Application of LNA in molecular recognition and biomedicine
4.1 LNA antisense
4.2 LNA-modified siRNA (siLNA)
4.3 LNA-modified DNAzyme (LNAzymes)
5 LNA in biotechnology
5.1 LNA primers and PCR
5.2 LNA probes and hybridization
5.3 LNA modification in aptamers
5.4 LNA molecular beacons
6 Design of locked nucleic acid molecular beacons
6.1 Selection of the reporter and quencher
6.2 Hermodynamic aspects
6.3 Balance between selectivity and hybridization rate
6.4 Modification of LNA
7 Applications of LNA-MB in molecular recognition and bioanalysis
7.1 Real time PCR
7.2 mRNA imaging in living cells
7.3 Targeted recognition of microRNA
7.4 Single nucleotide polymorphisms
7.5 Detection of circulating DNA using LNA-MB
8 Conclusion

CLC Number: 

[1] Culha M, Stokes D L, Griffin G D, Vo-Dinh T. J. Biomed. Opt., 2004, 9(3): 439.
[2] Li J, Tan W H, Wang K, Xiao D, Yang X, He X, Tang Z. Anal. Sci., 2001, 17: 1149.
[3] Yao G, Tan W H. Anal. Biochem., 2004, 331: 216.
[4] Lin Y W, Ho H T, Huang C C, Chang H T. Nucleic Acids Res., 2008, 36(19): e123.
[5] Singh S K, Koshkin A A, Wengel J, Nielsen P. Chem. Commun., 1998, 455.
[6] Tyagi S, Kramer F R. Nat. Biotechnol., 1996, 14: 303.
[7] Fang X H, Li J W J, Perlette J, Tan W H, Wang K M. Anal. Chem., 2000, 72: 747.
[8] Tan W H, Wang K M, Drake T J. Curr. Opin. Chem. Biol., 2004, 8: 547.
[9] Li J W J, Fang X H, Schuster S M, Tan W H. Angew. Chem. Int. Ed., 2000, 39: 1049.
[10] Tan W H, Fang X H, Li J, Liu X J. Chem. Eur. J., 2000, 6: 1107.
[11] Obika S, Nanbu D, Hari Y, Morio K I, In Y, Ishida T, Imanishi T. Tetrahedron Lett., 1997, 38(50):8735.
[12] Koshkin A A, Rajwanshi V K, Wengel J.Tetrahedron Lett., 1998, 39(24):4381.
[13] Koshkin A A, Singh S, Nielsen P, Rajwanshi V K, Kumar R, Meldgaard M, Olsen C E, Wengel J. Tetrahedron, 1998, 14:3607.
[14] Kaur H, Babu B R, Maiti S. Chem. Rev., 2007, 107(11): 4672.
[15] Petersen M, Nielsen C B, Nielsen K E, Jensen G A, Bondensgaard K, Singh S K. J. Mol. Recognit., 2000, 13: 44.
[16] Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T. Tetrahedron Lett., 1998, 39(30):5401.
[17] Natsume T, Ishikawa Y, Dedachi K, Tsukamoto T, Kurita N. Chem. Phys. Lett., 2007, 446(1/3): 151.
[18] Jepsen J S, Wengel J. Curr. Opin. Drug Discov. Devel., 2004, 7: 188.
[19] Roberts J, Palma E, Sazani P, Orum H, Cho M, Kole R. Mol. Ther., 2006, 14: 471.
[20] Graziewicz M A, Tarrant T K, Buckley B, Roberts J, Fulton L, Hansen H, Orum H, Kole R, Sazani P. Mol. Ther., 2008, 16: 1316.
[21] Guterstam P, Lindgren M, Johansson H, Tedebark U, Wengel J, El Andaloussi S, Langel U. Biochem. J., 2008, 412: 307.
[22] Childs J L, Disney M D, Turner D H. Proc. Natl. Acad. Sci. USA.,2002, 99: 11091.
[23] Fluiter K, Mook O R, Baas F. Methods Mol. Biol., 2009, 487: 189.
[24] Wang L, Yang C J, Medley C D, Benner S A, Tan W H. J. Am. Chem. Soc., 2005, 127: 15664.
[25] Buh Gasparic M, Tengs T, La Paz J L, Holst-Jensen A, Pla M, Esteve T, Zel J, Gruden K. Anal. Bioanal. Chem., 2010, 396: 2023.
[26] Martinez K, Estevez M C, Wu Y, Phillips J A, Medley C D, Tan W H. Anal. Chem., 2009, 81:3448.
[27] Morandi L, Ferrari D, Lombardo C, Pession A, Tallini G. J. Virol. Methods., 2007, 140: 148.
[28] Stenvang J, Silahtaroglu A N, Lindow M, Elmen J, Kauppinen S. Semin. Cancer Biol., 2008, 18: 89.
[29] Vester B, Lundberg L B, Sorensen M D, Babu B R, Douthwaite S, Wengel J. J. Am. Chem. Soc., 2002, 124: 13682.
[30] Donini S, Clerici M, Wengel J, Vester B, Peracchi A. J. Biol. Chem., 2007, 282: 35510.
[31] Fluiter K, Frieden M, Vreijling J, Koch T, Baas F. Oligonucleotides., 2005, 15: 246.
[32] Fahmy R G, Khachigian L M. Nucleic Acids Res., 2004, 32: 2281.
[33] Jakobsen M R, Haasnoot J, Wengel J, Berkhout B, Kjems J. Retrovirology, 2007, 4: 29.
[34] Kaur H, Scaria V, Maiti S. Biochemistry, 2010, 49: 9449.
[35] Schubert S, Furste J P, Werk D, Grunert H P, Zeichhardt H, Erdmann V A, Kurreck J. J. Mol. Biol., 2004, 339: 355.
[36] Vester B, Hansen L H, Lundberg L B, Babu B R,Sorensen M D, Wengel J, Douthwaite S. BMC Mol. Biol., 2006, 7: 19.
[37] Vester B, Lundberg L B, Sorensen M D, Babu B R, Douthwaite S, Wengel J. Biochem. Soc. Trans., 2004, 32: 37.
[38] Schubert S, Gul D C, Grunert H P, Zeichhardt H, Erdmann, V A, Kurreck J. Nucleic Acids Res., 2003, 31: 5982.
[39] Abdelgany A, Uddin M K, Wood M, Taira K, Beeson D. J. RNAi Gene Silencing, 2005, 1: 88.
[40] Braasch D A, Corey D R. Chem. Biol., 2001, 8(1):1.
[41] Vester B, Wengel J. Biochemistry, 2004, 43(42):13233.
[42] 李晓平(Li X P).湖南大学硕士论文(Master Dissertation of HuNan University of Bioscience and Technology), 2010.
[43] Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hökfelt T, Broberger C, Porreca F, Lai J, Ren K, Ossipov M, Koshkin A, Jakobsen N, Skouv J, Oerum H, Jacobsen M H, Wengel J. Proc. Natl. Acad. Sci. USA., 2000, 97(10): 5633.
[44] Straarup E M, Fisker N, Hedtjarn M, Lindholm M W, Rosenbohm C, Aarup V, Hansen H F, Orum H, Hansen J B, Koch T. Nucleic Acids Res., 2010, 38: 7100.
[45] Fluiter K, ten Asbroek A L, de Wissel M B, Jakobs M E, Wissenbach M, Olsson H, Olsen O, Oerum H, Baas F. Nucleic Acids Res., 2003, 31: 953.
[46] Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen J B, Hansen H F, Straarup E M, McCullagh K, Kearney P, Kauppinen S. Nucleic Acids Res., 2008, 36(4): 1153.
[47] Stein C A, Hansen J B, Lai J, Wu S, Voskresenskiy A, Høg A, Worm J, Hedtjärn M, Souleimanian N, Miller P, Soifer H S, Castanotto D, Benimetskaya L, Ørum H, Koch T. Nucleic Acids Res. 2010, 38(1): e3.
[48] Gao S, Dagnaes-Hansen F, Nielsen E J, Wengel J, Besenbacher F, Howard K A, Kjems J. Mol. Ther., 2009, 17: 1225.
[49] Nielsen K E, Rasmussen J, Kumar R, Wengel J, Jacobsen J P, Petersen M. Bioconjugate Chem., 2004, 15: 449.
[50] Petersen M, Bondensgaard K, Wengel J, Jacobsen J P. J. Am. Chem. Soc.,2002, 124: 5974.
[51] Crooke ST. Antisense Nucleic Acid Drug Dev., 1998, 8(2):133.
[52] Davis S, Lollo B, Freier S, Esau C. Nucleic Acids Res., 2006, 34: 2294.
[53] Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. Nature, 2008, 452(7189): 896.
[54] Schubert S, Kurreck J. Handb. Exp.Pharmacol., 2006, 173: 261.
[55] Nulf C J, Corey D. Nucleic Acids Res., 2004, 32 (13): 3792.
[56] Swayze E E, Siwkowski A M, Wancewicz E V, Migawa M T,Wyrzykiewicz T K, Hung G, Monia B P, Bennett C F. Nucleic Acids Res., 2007, 35: 687.
[57] Burdick A D, Sciabola S, Mantena S R, Hollingshead B D, Stanton R, Warneke J A, Zeng M, Martsen E, Medvedev A, Makarov S S, Reed L A, Davis II J W, Whiteley L O. Nucleic Acids Res., 2014, 42(8): 4882.
[58] Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Nature, 2001, 411:494.
[59] Braasch D A, Jensen S, Liu Y, Kaur K, Arar K, White M A, Corey D R. Biochemistry, 2003, 42: 7967.
[60] Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T, Wahlestedt C. Nucleic Acids Res., 2005, 33: 439.
[61] Mook O R, Baas F, de Wissel M B, Fluiter K. Mol. Cancer Ther., 2007, 6: 833.
[62] Wada S, Obika S, Shibata M A, Yamamoto T, Nakatani M, Yamaoka T, Torigoe H, Harada-Shiba M, Mol. Ther. Nucleic Acids. 2012, 1:e45.
[63] Santoro S W, Joyce G F. Proc. Natl. Acad. Sci. U.S.A., 1997, 94: 4262.
[64] Vester B, Lundberg L B, Sørensen M D, Babu B R, Douthwaite S, Wengel J. J. Am. Chem. Soc., 2002, 124: 13682.
[65] Latorra D, Arar K, Hurley J M. Mol. Cell. Probes, 2003, 17: 253.
[66] Levin J D, Fiala D, Samala M F, Kahn J D, Peterson R J. Nucleic Acids Res., 2006, 34: e142.
[67] Ballantyne K N, van Oorschot R A, Mitchell R J. Genomics., 2008, 91: 301.
[68] Asari M, Okuda K, Yajima D, Maseda C, Hoshina C, Omura T, Shiono H, Matsubara K, Shimizu K. J. Forensic Leg. Med., 2015, 31:36.
[69] Ugozzoli L A, Latorra D, Puckett R, Arar K, Hamby K. Anal. Biochem., 2004, 324: 143.
[70] Castoldi M, Benes V, Hentze M W, Muckenthaler M U. Methods, 2007, 43, 146.
[71] Ren J J, Meng X K. J. Zhejiang Univ. Sci. B, 2011, 12(2):149.
[72] Riahi R, Dean Z, Wu T H, Teitell M A, Chiou P Y, Zhang D D, Wong P K. Analyst, 2013, 138(17): 4777.
[73] Fontenete S, Guimarães N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N. PLoS One, 2013, 8(11): e81230.
[74] Syed M A, Pervaiz S.Oligonucleotides, 2010, 20: 215.
[75] Mayer G. Angew. Chem. Int. Ed., 2009, 48: 2672.
[76] Thiel K W. Oligonucleotides, 2009, 19: 209.
[77] Keefe A D, Pai S, and Ellington A. Nat. Rev. Drug Discovery, 2010, 9: 537.
[78] Darfeuille F, Hansen J B, Orum H, Di Primo C, Tolumé J J. Nucleic Acids Res., 2004, 32: 3101.
[79] Darfeuille F, Reigadas S, Hansen J B, Orum H, Di Primo C, Toulmé J J. Biochemistry., 2006, 45: 12076.
[80] Schmidt K S, Borkowski S, Kurreck J, Stephens A W, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann V A. Nucleic Acids Res., 2004, 32: 5757.
[81] Lebars I, Richard T, Di Primo C, Tolumé J J. Mol. Dis., 2007, 38: 204.
[82] Shi H, He X, Cui W, Wang K, Deng K, Li D, Xu F. Anal. Chim. Acta, 2014, 812: 138.
[83] Marras S A E. Mol. Biotechnol., 2008, 38: 247.
[84] Fang X H, Li J J, Perlette J, Tan W H. Anal. Chem., 2000, 72(23): 747A.
[85] Marras S A E, Kramer F R, Tyagi S. Nucleic Acids Res., 2002, 30(21): e122.
[86] Parkhurst K M., Parkhurst L J. Biochemistry., 1995, 34(1): 293.
[87] Marras S A. Mol. Biotechnol., 2008, 38(3):247.
[88] Tsourkas A, Behlke M A, Bao G. Nucleic Acids Res., 2002, 30(19):4208.
[89] Vargas, D Y, Raj A., Marras, S A, Kramer, F R., Tyagi S. Proc. Natl. Acad. Sci. U S A., 2005, 102(47):17008.
[90] Monroy-Contreras R, Vaca L. J. nucleic acids, 2011: 741723.
[91] Tsourkas A, Behlke M A, Rose S D, Bao G. Nucleic Acids Res., 2003, 31(4): 1319.
[92] Bonnet G, Tyagi S, Libchaber A, Kramer F R. Proc. Natl. Acad. Sci., 1999, 96: 6171.
[93] Tan L, Li Y, Drake T J, Moroz L, Wang K, Li J, Munteanu A, Yang C Y J, Martinez K, Tan W H. Analyst, 2005, 130: 1002.
[94] Yang C Y J, Wang L, Wu Y R, Kim Y G, Medley C D. Nucleic Acids. Res., 2007, 35: 4030.
[95] Li J, Tan W. Anal. Biochem., 2003, 312: 251.
[96] Warshawsky I, Mularo F. J. Clin. Pathol., 2011, 64(10):905.
[97] Morandi L, Biase D E, Visani M, Cesari V, Maglio G D, Pizzolitto S, Pession A, Tallini G. PLoS One, 2012,7(4): p1.
[98] Wang K, Huang J, Yang X, He X, Liu J. Analyst, 2013, 138(1): 62.
[99] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. J. Mol. Biol., 1990, 215: 403.
[100] Wu Y R,Yang C Y J, Moroz L L., Tan W H. Anal. Chem., 2008, 80: 3025.
[101] Ambros V. Cell, 2001, 107: 823.
[102] Bartel D P. Cell, 2004, 116: 281.
[103] Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Nucleic Acids Res.,2004, 32(22): e175.
[104] Lundmark M, Kørner C J, Nielsen T H. Physiol. Plant., 2010, 140(1): 57.
[105] Dong H F, Ding L, Yan F, Ji H X, Ju H X. Biomaterials, 2011, 32: 3875.
[106] Cerra C, Oliver J, Roberts S A., Horne G, Newman W G., Mohiyiddeen L. Human Reproduction, 2014, 29(12): 2832.
[107] Kamau E, Alemayehu A, Feghali K C, Tolbert L S, Ogutu B, Ockenhouse C F. Malar J., 2012, 11:23.
[108] Caseley E A, Muench S P, Roger S, Mao H J, Baldwin S A, Jiang L H. Int. J. Mol. Sci., 2014, 15(8): 13344.
[109] Motzer R J, Hutson T E, Hudes G R, Figlin R A, Martini J F, English P A, Huang X, Valota O, Williams J A. Cancer Chemother. Pharmacol., 2014, 74(4): 739.
[110] Johnson M P, Haupt L M, Griffiths L R. Nucleic Acids Res., 2004, 32(6): e55.
[111] Wang K, Tang Z, Yang C J, Kim Y, Fang X, Li W, Wu Y, Medley C D, Cao Z, Li J, Colon P, Lin H, Tan W. Angew. Chem. Int. Ed., 2009, 48(5): 856.
[112] Mhlanga M M, Malmberg L. Methods., 2001, 25(4): 463.
[113] Rupp J, Solbach W, Gieffers J. Appl. Environ. Microbiol., 2006,72(5): 3785.
[114] Gao Z F, Ling Y, Lu L, Chen N Y, Luo H Q, Li N B. Anal. Chem., 2014,86(5): 2543.
[115] Mandel P, Metais P. C R Seances Soc. Biol. Fil, 1948, 142: 241.
[116] Sorenson G D, Pribish D M, Valone F H., Memoli V A., Bzik D J., Yao S L. Cancer Epidemiol Biomarkers Prev., 1994, 3: 67.
[117] Fleischhacker M, Schmidt B. Biochim. et Biophys. Acta., 2007, 1775: 181.
[1] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[2] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[3] Yue Li, Jinghong Li. CRISPR Bioanalytical Chemistry Technology [J]. Progress in Chemistry, 2020, 32(1): 5-13.
[4] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[5] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[6] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[7] Wang Hui, Ponmani Jeyakkumar, Sangaraiah Nagarajan, Meng Jiangping, Zhou Chenghe. Current Researches and Applications of Perylene Compounds [J]. Progress in Chemistry, 2015, 27(6): 704-743.
[8] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[9] Liu Baoquan, Liu Qiang, Zhang Ji, Fan Shengdi, Yu Xiaoqi. Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes [J]. Progress in Chemistry, 2013, 25(08): 1237-1245.
[10] Zhao Chuanqi, Qu Xiaogang*. Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes [J]. Progress in Chemistry, 2013, 25(04): 539-544.
[11] Wan Decheng, Jin Ming, Pu Hongting. Supramolecular Fuzzy Recognition [J]. Progress in Chemistry, 2011, 23(10): 2095-2102.
[12] Zhang Tao, Chen Fan, Gai Qingqing, Qu Feng, Zhang Yukui. Ionic Liquids and Protein/Nucleic Acid Interaction [J]. Progress in Chemistry, 2011, 23(10): 2132-2139.
[13] . Inorganic Ions and Small Molecular Recognition Based on Functional Modification Quantum Dots [J]. Progress in Chemistry, 2010, 22(06): 1077-1085.
[14] . Molecular Imprinting Technology Based on Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 888-897.
[15] . Click Chemistry and Functional Organic/ Polymeric Materials [J]. Progress in Chemistry, 2010, 22(0203): 406-416.