English
新闻公告
More
化学进展 2008, Vol. 20 Issue (06): 821-827 前一篇   后一篇

• 综述与评论 •

有序分子组装膜电极非理想伏安图的理论研究*

郭彦 赵健伟**   

  1. (南京大学化学化工学院 生命分析化学教育部重点实验室 南京 210008)
  • 收稿日期:2007-07-30 修回日期:2007-09-21 出版日期:2008-06-24 发布日期:2008-06-24
  • 通讯作者: 赵健伟

Theoretical Studies of Nonideal Electrochemical Behavior of Self-assembled System

Guo Yan; Zhao Jianwei**

  

  1. (Key laboratory of Analytical Chemistry for Life Sciences, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China)
  • Received:2007-07-30 Revised:2007-09-21 Online:2008-06-24 Published:2008-06-24
  • Contact: Zhao Jianwei
在有序分子组装体系的电化学研究中,电活性物种间的相互作用直接导致其偏离理想的电化学行为,譬如出现双峰或者峰展宽的现象。从这些非理想的电化学数据中提取热力学和动力学数据显得相对困难,因而了解和评价这些非理想的电化学行为显得十分有必要。本文着重就这些非理想电化学现象的理论模型、基本公式和微观认识进行了评述。理解这些非理性电化学的影响因素,不仅加深对表面电化学体系的认识,更对现在的研究热点课题如主客体识别、分子电子器件、生物传感器等具有重要意义。
Electrochemistry studies of self-assembled systems show the intermolecular interaction among the redox species can significantly influence the electrochemical behavior, exhibiting such as peak broadening or double peaks phenomena. Knowing these non-ideal electrochemical behaviors is very indispensible for the theoretical analysis of the thermodynamic and kinetic information of the system. Focusing on these issues, we summarize the theoretical models and formulism behind the experimental observation in this review. Understanding the underlying mechanism of how the intermolecular interaction affects the electrochemical non-idealities is not only instructive for surface electrochemistry, but also important for those research hotspots such as Host-guest recognition, molecular electron devices, and biosensors.

中图分类号: 

()

[ 1 ] Ulman A. An Introduction to Ultrathin Organic Films : from Langmuir-Blodgett to Self-assembly. San Diego , CA: Academic Press , 1991. 1 —238
[ 2 ] Love J C , Estroff L A , Kriebel J K, et al . Chem. Rev. , 2005 ,105 : 1103 —1169
[ 3 ] Norde W, Haynes C A. Proteins at Interfaces II , Fundamentals and Applications. San Diego , CA: American Chemical Society ,1995. 26 —40
[ 4 ] Adamson A W. Physical Chemistry of Surfaces (5th ed. ) . New York : John Wiley and Sons , 1990. 379 —389
[ 5 ] Sumner J J , Creager S E. J . Phys. Chem. B , 2001 , 105 :8739 —8745
[ 6 ] Chidsey C E D , Bertozzi C R , Putvinski T M, et al . J . Am.Chem. Soc. , 1990 , 112 : 4301 —4306
[ 7 ] Quist F , Tabard-Cossa V , Badia A. J . Phys. Chem. B , 2003 ,107 : 10691 —10695
[ 8 ] Laviron E. Electroanalytical Chemistry , Vol . 12. New York :Marcel Dekker , 1982. 53 —191
[ 9 ] Brown A P , Anson F C. Anal . Chem. , 1977 , 49 : 265 —272
[10] Brown A P , Anson F C. J . Electroanal . Chem. , 1977 , 83 :203 —206
[11] Laviron E. J . Electroanal . Chem. , 1974 , 52 : 395 —402
[12] Brown A P , Anson F C. Anal . Chem. , 1977 , 49 : 1589 —1595
[13] Smith D F , Willman K, Kuo K, et al . J . Electroanal . Chem. ,1979 , 95 : 217 —227
[14] Kano K, Uno B. Anal . Chem. , 1993 , 65 : 1088 —1093
[15] Matsuda H , Aoki K, Tokuda K. J . Electroanal . Chem. , 1987 ,217 : 1 —13
[16] Matsuda H , Aoki K, Tokuda K. J . Electroanal . Chem. , 1987 ,217 : 15 —32
[17] Rowe G K, Creager S E. J . Phys. Chem. , 1994 , 98 : 5500 —5507
[18] Creager S E , Rowe G K. Langmuir , 1994 , 10 : 1186 —1192
[19] Creager S E , Rowe G K. J . Electroanal . Chem. , 1997 , 420 :291 —299
[20] Smith C P , White H S. Anal . Chem. , 1992 , 64 : 2398 —2405
[21] Lane R F , Hubbard A T. J . Phys. Chem. , 1973 , 77 : 1413 —1418
[22] Oldham KB. J . Electroanal . Chem. , 1975 , 63 : 139 —156
[23] Hunter R J . Foundations of Colloid Science , Vol . 1. Oxford :Oxford University Press , 1987. 440 —447
[24] Honeychurch MJ . J . Electroanal . Chem. , 1998 , 445 : 63 —69
[25] Fawcett W R. J . Electroanal . Chem. , 1994 , 378 : 117 —124
[26] Levine S. J . Colloid Interface. Sci . , 1971 , 37 : 619 —634
[27] Uosaki K, Sato Y, Kita H. Langmuir , 1991 , 7 : 1510 —1514
[28] Rowe G K, Creager S E. Langmuir , 1991 , 7 : 2307 —2312
[29] Creager S E , Rowe G K. Anal . Chim. Acta , 1991 , 246 : 233 —239
[30] Sumner J J , Creager S E. J . Am. Chem. Soc. , 2000 , 122 :11914 —11920
[31] Ohtani M, Kuwabata S , Yoneyama H. Anal . Chem. , 1997 , 69 :1045 —1053
[32] Andreu R , Calvente J J , Fawcett W R , et al . J . Phys. Chem.B , 1997 , 101 : 2884 —2894
[33] Calvente J J , Andreu R , Molero M, et al . J . Phys. Chem. B ,2001 , 105 : 9557 —9568
[34] Marcus R A. J . Chem. Phys. , 1956 , 24 : 966 —978
[35] Marcus R A. J . Chem. Phys. , 1965 , 43 : 679 —701
[36] Bockris J O M, Khan S U M. Quantum Electrochemistry. New York : Plenum Press , 1979. 200 —301
[37] 吴辉煌(Wu H H) . 电化学( Electrochemistry) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2004. 40 —51
[38] Weber K, Creager S E. Anal . Chem. , 1994 , 66 : 3164 —3172
[39] 赵健伟(Zhao J W) , 董绍俊(Dong S J) , 刘忠范(Liu Z F) . 分析化学(Chin. J . Anal . Chem. ) , 2000 , 28(6) : 661 —665
[40] Chidsey C E D. Science , 1991 , 251 : 919 —922
[41] Sek S , Misicka A , Bilewicz R. J . Phys. Chem. B , 2000 , 104 :5399 —5402
[42] Robinson D B , Chidsey C E D. J . Phys. Chem. B , 2002 , 106 :10706 —10713
[43] Fedurco M, Augustynski J , Indiani C , et al . J . Am. Chem.Soc. , 2005 , 127 : 7638 —7646
[44] Yue H , Khoshtariya D , Waldeck D H , et al . J . Phys. Chem. B ,2006 , 110 : 19906 —11913
[45] Chi Q , Zhang J D , Andersen J E T , et al . J . Phys. Chem. B ,2001 , 105 : 4669 —4679
[46] 赵健伟(Zhao J W) , 于化忠( Yu H Z) , 王永强(Wang Y Q)等. 物理化学学报(Acta Phys. Chim. Sin. ) , 1997 , 13 (1) :42 —47
[47] 赵健伟(Zhao J W) , 于化忠( Yu H Z) , 王永强(Wang Y Q)等. 物理化学学报(Acta Phys. Chim. Sin. ) , 1996 , 12 (7) :581 —588
[48] Wang Y Q , Yu H Z , Zhao J W, et al . Langmuir , 1996 , 12 :5466 —5473
[49] Rulkens R , Lough A J , Manners I , et al . J . Am. Chem. Soc. ,1996 , 118 : 12683 —12695
[50] Schurko R W, Hung I , Macdonald CL B , et al . J . Am. Chem.Soc. , 2002 , 124 : 13204 —13214
[51] Bühl M, Grigoleit S. Organometallics , 2005 , 24 : 1516 —1527
[52] RouéS , Lapinte C. Organometallics , 2004 , 23 : 2558 —2567

[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[5] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[6] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[7] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[8] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[11] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[12] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[13] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[14] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[15] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.