English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 259-271 DOI: 10.7536/PC210112 前一篇   后一篇

• 综述 •

MXene在电化学传感器中的应用

孙义民1,*(), 李厚燊1, 陈振宇1, 王东1, 王展鹏1, 肖菲2,*()   

  1. 1 武汉工程大学等离子体化学与新材料湖北省重点实验室 武汉 430205
    2 华中科技大学化学与化工学院能量转换与存储材料化学教育部重点实验室 武汉 430074
  • 收稿日期:2021-01-14 修回日期:2021-05-10 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 孙义民, 肖菲
  • 基金资助:
    国家自然科学基金青年基金项目(51504168); 湖北省自然科学基金面上基金项目(2019CFB415); 武汉工程大学研究生教育创新基金(CX2020141)

The Application of MXene in Electrochemical Sensor

Yimin Sun1(), Houshen Li1, Zhenyu Chen1, Dong Wang1, Zhanpeng Wang1, Fei Xiao2()   

  1. 1 Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology,Wuhan 430205, China
    2 Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
  • Received:2021-01-14 Revised:2021-05-10 Online:2022-02-20 Published:2021-07-29
  • Contact: Yimin Sun, Fei Xiao
  • Supported by:
    National Natural Science Foundation of China(51504168); Natural Science Foundation of Hubei Province(2019CFB415); Graduate Education Innovation Foundation of WIT(CX2020141)

过渡金属碳化物或氮化物(MXene)作为一种新型的二维层状材料,由于具有良好的导电性、水中分散性、高的生物相容性和稳定性等,在电化学传感领域具有巨大的应用潜力。将MXene与其他纳米材料复合,可以扬长避短,在性能上实现优势协同和功能互补,有效提高电化学传感器的灵敏度和选择性。本文按照检测物的种类进行分类,综述了基于MXene材料构建的电化学传感平台在生物标记物和环境污染物检测中的应用,并讨论了MXene材料在电化学传感领域未来研究发展和应用中所面临的挑战。

As a new two-dimensional layered material, transition metal carbides or nitrides (MXene) possess great potential in the fields of electrochemical sensing due to their good conductivity, water dispersion, high biocompatibility and stability. Incorporation of MXene with other nanomaterials could create complementary and synergistic effect for the composite, which will effectively improve the sensitivity and selectivity of electrochemical sensors. This paper summarizes the application of MXene based electrochemical sensing platforms for the detection of biomarkers and environmental pollutants in recent years, and the challenges of MXene materials in the fields of electrochemical sensing in the future are also discussed.

Contents

1 Introduction

2 MXene based electrochemical sensors for biomarkers

2.1 Glucose sensors

2.2 H2O2 sensors

2.3 Neurotransmitter sensors

2.4 Cancer biomarker sensors

3 MXene based electrochemical sensors for environmental pollutants detection

3.1 Pesticide sensors

3.2 Other environmental pollutants sensors

4 Conclusion and outlook

()
图1 酶促型葡萄糖传感器工作原理图[35]
Fig. 1 Schematic illustration of working principle of enzymatic glucose sensor[35]
图2 Ti3C2-HF/TBA/GOx/GTA/GC的制备及葡萄糖检测机制的示意图[35]
Fig. 2 Schematic illustration of the formation of Ti3C2-HF/TBA/GOx/GTA/GC and glucose detection mechanism of the proposed biosensing system[35]
图3 (A)Ti3C2TX-MNS制备示意图,(B)用于酶固定化的纯Ti3C2TX膜、纯石墨烯膜和MG复合膜的制备示意图[37]
Fig. 3 Schematic illustration of preparation of (A) Ti3C2TX MNS; (B) pure Ti3C2TX film, pure graphene film, and MG hybrid film for enzyme immobilization[37]
图4 (A)纯Ti3C2TX膜,(B)纯石墨烯膜,(C)MG(1:2)复合膜,(D)MG(1:1)复合膜,(E)MG(1:2)复合膜,(F)MG(1:3)复合膜的表面SEM图像[37]
Fig. 4 Top surface SEM images of (A) pure Ti3C2TX film, (B) pure graphene film, (C) MG (1:2) hybrid film, (D) MG (1:1) hybrid film, (E) MG (1:2) hybrid film, and (F) MG (1:3) hybrid film[37]
图5 (A)纯Ti3C2TX膜,(B)纯石墨烯膜,(C)MG(1:2)复合膜,(D)MG(1:1)复合膜,(E)MG(1:2)复合膜,(F)MG(1:3)复合膜的横断面SEM图像[37]
Fig. 5 Cross-sectional SEM images of (A) pure Ti3C2TX film, (B) pure graphene film, (C) MG (1:2) hybrid film, (D) MG (1:1) hybrid film, (E) MG (1:2) hybrid film, and (F) MG (1:3) hybrid film[37]
图6 酶/Ti3C2TX/PB/N-LSG电极制备过程示意图[40]
Fig. 6 Schematic illustration of the preparation of the enzyme/Ti3C2TX/PB/N-LSG electrodes[40]
图7 MXene/GCPE的制备原理图及AD检测流程[57]
Fig. 7 Schematic illustration of the preparation of MXene/GCPE and AD detection process[57]
图8 (a)石墨粉,(b)Ti2CTX-N2MXene和(c,d)MXene/石墨糊复合材料的SEM图[57]
Fig. 8 SEM images of (a) graphite powder, (b) Ti2CTX-N2MXene, and (c,d) MXene/graphite composite paste[57]
图9 (a)PB@Ti3C2TX合成过程示意图;(b)Ti3C2TX纳米片和(c)PB@Ti3C2TX纳米复合材料的SEM图像;(d)PB@Ti3C2TX纳米复合材料的TEM图像[74]
Fig. 9 (a) Schematic illustration of the synthesis process of PB@Ti3C2TX; SEM images of (b) Ti3C2TX nanosheets and (c) PB@Ti3C2TX nanocomposites; (d) TEM image of PB@Ti3C2TX nanocomposites[74]
图10 Nb4C3Tx修饰的传感器的制备及Pb2+检测过程示意图[96]
Fig. 10 Schematic illustration of the preparation of Nb4C3Tx modified sensor and the Pb2+ detection process[96]
[1]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[2]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.

doi: 10.1021/nn204153h     URL    
[3]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138     URL    
[4]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970     URL    
[5]
Eklund P, Rosen J, Persson P O Å. J. Phys. D: Appl. Phys., 2017, 50(11): 113001.

doi: 10.1088/1361-6463/aa57bc     URL    
[6]
Yao S S, Li N, Ye H Q, Han K. Prog. Chem., 2018, 30(7): 932.
( 姚送送, 李诺, 叶红齐, 韩凯. 化学进展, 2018, 30(7): 932.)

doi: 10.7536/PC171114    
[7]
Naguib M, Gogotsi Y. Acc. Chem. Res., 2015, 48(1): 128.

doi: 10.1021/ar500346b     URL    
[8]
Magnuson M, Mattesini M. Thin Solid Films, 2017, 621: 108.

doi: 10.1016/j.tsf.2016.11.005     URL    
[9]
Sun D D, Hu Q K, Li Z Y, Wang L B, Zhou A G, Wu Q H. J. Synth. Cryst., 2014, 43(11): 2950.
( 孙丹丹, 胡前库, 李正阳, 王李波, 周爱国, 吴庆华. 人工晶体学报, 2014, 43(11): 2950.)
[10]
Wang L B, Liu H, Lv X, Cui G Z, Gu G X. J. Alloys Compd., 2020, 828: 154251.

doi: 10.1016/j.jallcom.2020.154251     URL    
[11]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 1.
[12]
Li X L, Zhu J F, Wang L, Wu W L, Fang Y. Electrochimica Acta, 2017, 258: 291.

doi: 10.1016/j.electacta.2017.11.004     URL    
[13]
Zhao M Q, Xie X Q, Ren C G, Makaryan T, Anasori B, Wang G X, Gogotsi Y. Adv. Mater., 2017, 29(37): 1702410.

doi: 10.1002/adma.v29.37     URL    
[14]
Zhang X F, Liu Y, Dong S L, Yang J Q, Liu X D. Electrochimica Acta, 2019, 294: 233.

doi: 10.1016/j.electacta.2018.10.096     URL    
[15]
Chen S, Xiang Y F, Xu W J, Peng C. Inorg. Chem. Front., 2019, 6(1): 199.

doi: 10.1039/c8qi00957k    
[16]
Zhang C, Nicolosi V. Energy Storage Mater., 2019, 16: 102.
[17]
Mariano M, Mashtalir O, Antonio F Q, Ryu W H, Deng B C, Xia F N, Gogotsi Y, Taylor A D. Nanoscale, 2016, 8(36): 16371.

pmid: 27722443
[18]
Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q. J. Membr. Sci., 2018, 548: 548.

doi: 10.1016/j.memsci.2017.11.065     URL    
[19]
Ding L, Wei Y Y, Li L B, Zhang T, Wang H H, Xue J, Ding L X, Wang S Q, Caro J, Gogotsi Y. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[20]
Gao G P, O’Mullane A P, Du A J. ACS Catal., 2017, 7(1): 494.

doi: 10.1021/acscatal.6b02754     URL    
[21]
Zhu J, Ha E, Zhao G, Zhou Y, Huang D, Yue G, Hu L, Sun N, Wang Y, Lee L Y S. Coord. Chem. Rev., 2017, 352: 306.

doi: 10.1016/j.ccr.2017.09.012     URL    
[22]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421     pmid: 27609888
[23]
Cao M S, Cai Y Z, He P, Shu J C, Cao W Q, Yuan J. Chem. Eng. J., 2019, 359: 1265.

doi: 10.1016/j.cej.2018.11.051     URL    
[24]
George S M, Kandasubramanian B. Ceram. Int., 2020, 46(7): 8522.

doi: 10.1016/j.ceramint.2019.12.257     URL    
[25]
Lin H, Chen Y, Shi J L. Adv. Sci., 2018, 5(10): 1800518.

doi: 10.1002/advs.v5.10     URL    
[26]
Xue Q, Zhang H J, Zhu M S, Pei Z X, Li H F, Wang Z F, Huang Y, Huang Y, Deng Q H, Zhou J, Du S Y, Huang Q, Zhi C Y. Adv. Mater., 2017, 29(15): 1604847.

doi: 10.1002/adma.201604847     URL    
[27]
Soomro R A, Jawaid S, Zhu Q Z, Abbas Z, Xu B. Chin. Chem. Lett., 2020, 31(4): 922.

doi: 10.1016/j.cclet.2019.12.005     URL    
[28]
Thanh T D, Balamurugan J, Lee S H, Kim N H, Lee J H. Biosens. Bioelectron., 2016, 81: 259.

doi: S0956-5663(16)30186-5     pmid: 26967913
[29]
Chekin F, Teodorescu F, Coffinier Y, Pan G H, Barras A, Boukherroub R, Szunerits S. Biosens. Bioelectron., 2016, 85: 807.

doi: 10.1016/j.bios.2016.05.095     URL    
[30]
Ling Z, Ren C G, Zhao M Q, Yang J, Giammarco J M, Qiu J S, Barsoum M W, Gogotsi Y. PNAS, 2014, 111(47): 16676.

doi: 10.1073/pnas.1414215111     URL    
[31]
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4(1): 1.
[32]
Lorencova L, Gajdosova V, Hroncekova S, Bertok T, Blahutova J, Vikartovska A, Parrakova L, Gemeiner P, Kasak P, Tkac J. Electroanalysis, 2019, 31(10): 201981003.
[33]
Chen L W, Gan L H, Xu Z J. Chem. Res. Chin. Univ., 2001, 22(11): 1916.
( 陈龙武, 甘礼华, 徐子颉. 高等学校化学学报, 2001, 22(11): 1916.)
[34]
Zaidi S A, Shin J H. Talanta, 2016, 149: 30.

doi: 10.1016/j.talanta.2015.11.033     URL    
[35]
Chia H L, Mayorga-Martinez C C, Antonatos N, Sofer Z, Gonzalez-Julian J J, Webster R D, Pumera M. Anal. Chem., 2020, 92(3): 2452.

doi: 10.1021/acs.analchem.9b03634     URL    
[36]
Wang Y, Ma X L, Wen Y, Xing Y Y, Zhang Z R, Yang H F. Biosens. Bioelectron., 2010, 25(11): 2442.

doi: 10.1016/j.bios.2010.04.002     pmid: 20430608
[37]
Gu H, Xing Y D, Xiong P, Tang H L, Li C C, Chen S, Zeng R J, Han K, Shi G Y. ACS Appl. Nano Mater., 2019, 2(10): 6537.

doi: 10.1021/acsanm.9b01465     URL    
[38]
Rakhi R B, Nayak P, Xia C, Alshareef H N. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[39]
Wu M Y, Zhang Q, Fang Y Y, Deng C, Zhou F Z, Zhang Y, Wang X D, Tang Y, Wang Y J. J. Colloid Interface Sci., 2021, 586: 20.

doi: 10.1016/j.jcis.2020.10.065     URL    
[40]
Lei Y J, Alshareef A H, Zhao W L, Inal S. ACS Appl. Nano Mater., 2020, 3(2): 1166.

doi: 10.1021/acsanm.9b01795     URL    
[41]
Li M H, Fang L, Zhou H, Wu F, Lu Y, Luo H J, Zhang Y X, Hu B S. Appl. Surf. Sci., 2019, 495: 143554.

doi: 10.1016/j.apsusc.2019.143554     URL    
[42]
Sawangphruk M, Sanguansak Y, Krittayavathananon A, Luanwuthi S, Srimuk P, Nilmoung S, Maensiri S, Meevasana W, Limtrakul J. Carbon, 2014, 70: 287.

doi: 10.1016/j.carbon.2014.01.010     URL    
[43]
Sun X L, Guo S J, Liu Y, Sun S H. Nano Lett., 2012, 12(9): 4859.

doi: 10.1021/nl302358e     URL    
[44]
Qin Y, Li Z H, Wang Y L, Wang D B, Jiang J K. New Chem. Mater., 2019, 47(1): 1.
( 秦瑜, 李泽晖, 王亚玲, 王东滨, 蒋靖坤. 化工新型材料, 2019, 47(1): 1.)
[45]
Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud K A, Tkac J. Electrochimica Acta, 2017, 235: 471.

doi: 10.1016/j.electacta.2017.03.073     URL    
[46]
Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud K A, Tkac J. Sens. Actuat. B: Chem., 2018, 263: 360.

doi: 10.1016/j.snb.2018.02.124     URL    
[47]
Neampet S, Ruecha N, Qin J Q, Wonsawat W, Chailapakul O, Rodthongkum N. Microchimica Acta, 2019, 186(12): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[48]
Wang F, Yang C, Duan M, Tang Y, Zhu J. Biosens. Bioelectron., 2015, 74: 1022.

doi: 10.1016/j.bios.2015.08.004     pmid: 26264270
[49]
Wang F, Yang C H, Duan C Y, Xiao D, Tang Y, Zhu J F. J. Electrochem. Soc., 2014, 162(1): B16.

doi: 10.1149/2.0371501jes     URL    
[50]
Zheng J S, Diao J L, Jin Y Z, Ding A L, Wang B, Wu L Z, Weng B, Chen J C. J. Electrochem. Soc., 2018, 165(5): B227.

doi: 10.1149/2.0051807jes     URL    
[51]
Yan X Y, Gu Y, Li C, Tang L, Zheng B, Li Y R, Zhang Z Q, Yang M. Biosens. Bioelectron., 2016, 77: 1032.

doi: 10.1016/j.bios.2015.10.085     URL    
[52]
Li H, Zhao Y Y, Peng H N. Progress in Chemistry, 2018, 30: 1228.
( 李红, 赵媛媛, 彭浩南. 化学进展, 2018, 30: 1228.)

doi: 10.7536/PC180201    
[53]
Zheng J S, Wang B, Ding A L, Weng B, Chen J C. J. Electroanal. Chem., 2018, 816: 189.

doi: 10.1016/j.jelechem.2018.03.056     URL    
[54]
Shahzad F, Iqbal A, Zaidi S A, Hwang S W, Koo C M. J. Ind. Eng. Chem., 2019, 79: 338.

doi: 10.1016/j.jiec.2019.03.061    
[55]
Zhang W X, Zheng J Z, Shi J G, Lin Z Q, Huang Q T, Zhang H Q, Wei C, Chen J H, Hu S R, Hao A Y. Anal. Chimica Acta, 2015, 853: 285.

doi: 10.1016/j.aca.2014.10.032     URL    
[56]
Rasheed P A, Pandey R P, Gomez T, Jabbar K A, Prenger K, Naguib M, Aïssa B, Mahmoud K A. Electrochem. Commun., 2020, 119: 106811.

doi: 10.1016/j.elecom.2020.106811     URL    
[57]
Shankar S S, Shereema R M, Rakhi R B. ACS Appl. Mater. Interfaces, 2018, 10(50): 43343.

doi: 10.1021/acsami.8b11741     URL    
[58]
Liu L, Wei Y, Jiao S, Zhu S, Liu X. Biosens. Bioelectron., 2019, 137: 45.

doi: 10.1016/j.bios.2019.04.059     URL    
[59]
Duan F H, Guo C P, Hu M Y, Song Y P, Wang M H, He L H, Zhang Z H, Pettinari R, Zhou L M. Sens. Actuat. B: Chem., 2020, 310: 127844.

doi: 10.1016/j.snb.2020.127844     URL    
[60]
Mohammadniaei M, Koyappayil A, Sun Y, Min J H, Lee M H. Biosens. Bioelectron., 2020, 159: 112208.

doi: 10.1016/j.bios.2020.112208     URL    
[61]
Klaunig J E, Kamendulis L M. Annu. Rev. Pharmacol. Toxicol., 2004, 44(1): 239.

doi: 10.1146/pharmtox.2004.44.issue-1     URL    
[62]
Yamazaki T, Kawai C, Yamauchi A, Kuribayashi F. Trop.Med.Health, 2011, 39(2): 41.
[63]
Tong L Y, Chuang C C, Wu S Y, Zuo L. Cancer Lett., 2015, 367(1): 18.

doi: 10.1016/j.canlet.2015.07.008     URL    
[64]
Zheng J S, Wang B, Jin Y Z, Weng B, Chen J C. Microchimica Acta, 2019, 186(2): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[65]
Zhao S F, Hu F X, Shi Z Z, Fu J J, Chen Y, Dai F Y, Guo C X, Li C M. Nano Res., 2021, 14(3): 879.

doi: 10.1007/s12274-020-3130-0     URL    
[66]
Kumar S, Lei Y J, Alshareef N H, Quevedo-Lopez M A, Salama K N. Biosens. Bioelectron., 2018, 121: 243.

doi: 10.1016/j.bios.2018.08.076     URL    
[67]
Zhou S J, Gu C X, Li Z Z, Yang L Y, He L H, Wang M H, Huang X Y, Zhou N, Zhang Z H. Appl. Surf. Sci., 2019, 498: 143889.

doi: 10.1016/j.apsusc.2019.143889     URL    
[68]
Wang H Y, Sun J J, Lu L, Yang X, Xia J F, Zhang F F, Wang Z H. Anal. Chimica Acta, 2020, 1094: 18.

doi: 10.1016/j.aca.2019.10.003     URL    
[69]
Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers K R. Biosens. Bioelectron., 2001, 16(4/5): 225.

doi: 10.1016/S0956-5663(01)00126-9     URL    
[70]
Bao J, Hou C J, Chen M, Li J J, Huo D Q, Yang M, Luo X G, Lei Y. J. Agric. Food Chem., 2015, 63(47): 10319.

doi: 10.1021/acs.jafc.5b03971     URL    
[71]
Lu X, Li Y S, Tao L, Song D D, Wang Y Z, Li Y, Gao F M. Nanotechnology, 2019, 30(5): 055501.

doi: 10.1088/1361-6528/aaee3f     URL    
[72]
Zhou L Y, Zhang X N, Ma L, Gao J, Jiang Y J. Biochem. Eng. J., 2017, 128: 243.

doi: 10.1016/j.bej.2017.10.008     URL    
[73]
Jiang Y J, Zhang X N, Pei L J, Yue S, Ma L, Zhou L Y, Huang Z H, He Y, Gao J. Chem. Eng. J., 2018, 339: 547.

doi: 10.1016/j.cej.2018.01.111     URL    
[74]
He Y, Zhou X T, Zhou L Y, Zhang X N, Ma L, Jiang Y J, Gao J. Ind. Eng. Chem. Res., 2020, 59(35): 15556.

doi: 10.1021/acs.iecr.0c02154     URL    
[75]
Zhao F N, Yao Y, Jiang C M, Shao Y Z, BarcelÓ D, Ying Y B, Ping J F. J. Hazard. Mater., 2020, 384: 121358.

doi: 10.1016/j.jhazmat.2019.121358     URL    
[76]
Song D D, Jiang X Y, Li Y S, Lu X, Luan S R, Wang Y Z, Li Y, Gao F M. J. Hazard. Mater., 2019, 373: 367.

doi: 10.1016/j.jhazmat.2019.03.083     URL    
[77]
Ya Y, Jiang C W, Mo L X, Li T, Xie L P, He J, Tang L, Ning D J, Yan F Y. Food Anal. Methods, 2017, 10(5): 1479.

doi: 10.1007/s12161-016-0708-y     URL    
[78]
Yang Y, Xing X X, Zou T, Wang Z D, Zhao R J, Hong P, Peng S J, Zhang X, Wang Y D. J. Hazard. Mater., 2020, 386: 121958.

doi: 10.1016/j.jhazmat.2019.121958     URL    
[79]
Wu D H, Wu M Y, Yang J H, Zhang H W, Xie K F, Lin C T, Yu A M, Yu J H, Fu L. Mater. Lett., 2019, 236: 412.

doi: 10.1016/j.matlet.2018.10.150     URL    
[80]
Tu X L, Gao F, Ma X, Zou J, Yu Y F, Li M F, Qu F L, Huang X G, Lu L M. J. Hazard. Mater., 2020, 396: 122776.

doi: 10.1016/j.jhazmat.2020.122776     URL    
[81]
Zhu X Y, Liu P, Xue T, Ge Y, Ai S R, Sheng Y Y, Wu R M, Xu L L, Tang K J, Wen Y P. Ceram. Int., 2021, 47(1): 173.

doi: 10.1016/j.ceramint.2020.08.121     URL    
[82]
Shen Y, Rao D J, Sheng Q L, Zheng J B. Microchimica Acta, 2017, 184(9): 3591.

doi: 10.1007/s00604-017-2392-z     URL    
[83]
Yang H, Li S X, Yu H W, Zheng F Y, Lin L X, Chen J, Li Y H, Lin Y. Nanoscale, 2019, 11(18): 8950.

doi: 10.1039/c9nr01146c     pmid: 31017164
[84]
Wu L X, Lu X B, Dhanjai, Wu Z S, Dong Y F, Wang X H, Zheng S H, Chen J P. Biosens. Bioelectron., 2018, 107: 69.

doi: 10.1016/j.bios.2018.02.021     URL    
[85]
Fartas F, Abdullah J, Yusof N, Sulaiman Y, Saiman M. Sensors, 2017, 17(5): 1132.

doi: 10.3390/s17051132     URL    
[86]
Wu L D, Lu X B, Zhang H J, Chen J P. ChemSusChem, 2012, 5(10): 1918.

doi: 10.1002/cssc.v5.10     URL    
[87]
Huang R M, Liao D, Chen S S, Yu J G, Jiang X Y. Sens. Actuat. B: Chem., 2020, 320: 128386.

doi: 10.1016/j.snb.2020.128386     URL    
[88]
Jaiswal N, Tiwari I, Foster C W, Banks C E. Electrochimica Acta, 2017, 227: 255.

doi: 10.1016/j.electacta.2017.01.007     URL    
[89]
Li X J, Ping J F, Ying Y B. Trac Trends Anal. Chem., 2019, 113: 1.

doi: 10.1016/j.trac.2019.01.008     URL    
[90]
Liu H, Duan C Y, Yang C H, Shen W Q, Wang F, Zhu Z F. Sens. Actuat. B: Chem., 2015, 218: 60.

doi: 10.1016/j.snb.2015.04.090     URL    
[91]
Wang Y H, Zeng Z X, Qiao J Y, Dong S Q, Liang Q, Shao S J. Talanta, 2021, 221: 121605.

doi: 10.1016/j.talanta.2020.121605     URL    
[92]
Wang X, Li M J, Yang S, Shan J J. Electrochimica Acta, 2020, 359: 136938.

doi: 10.1016/j.electacta.2020.136938     URL    
[93]
Li H, Kong D M, Progress in Chemistry, 2013, 25: 2119.
( 李慧, 孔德明. 化学进展, 2013, 25: 2119.).

doi: 10.7536/PC130542    
[94]
Wang X X, Gao J, Liu G M, Zhu X, Cui J Y, Sun Q Q. Chemical Reagents, 2019, 41: 113.
( 王新星, 高健, 刘广茂, 朱旭, 崔久英, 孙琪琪. 化学试剂, 2019, 41: 113.)
[95]
Cheng H L, Yang J R. Int. J. Electrochem. Sci., 2020, 15: 2295.
[96]
Rasheed P A, Pandey R P, Gomez T, Naguib M, Mahmoud K A. RSC Adv., 2020, 10(41): 24697.

doi: 10.1039/D0RA04377J     URL    
[97]
Lv X, Pei F B, Feng S S, Wu Y, Chen S M, Hao Q L, Lei W. J. Electrochem. Soc., 2020, 167(6): 067509.

doi: 10.1149/1945-7111/ab7e22     URL    
[98]
Lu M, Li H J, Han W J, Chen J N, Shi W, Wang J H, Meng X M, Qi J G, Li H B, Zhang B S, Zhang W, Zheng W T. J. Energy Chem., 2019, 31: 148.

doi: 10.1016/j.jechem.2018.05.017     URL    
[1] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[2] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[3] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[4] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[5] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[6] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[7] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[8] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[9] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[10] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[11] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[12] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
[13] 李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. MXene及其复合材料在钠/钾离子电池中的应用[J]. 化学进展, 2019, 31(9): 1283-1292.
[14] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[15] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
阅读次数
全文


摘要

MXene在电化学传感器中的应用