English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 219-232 DOI: 10.7536/PC220723 前一篇   后一篇

• 综述 •

抗坏血酸电化学传感研究进展

钟衍裕, 王正运*(), 刘宏芳*()   

  1. 华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 材料化学与服役失效湖北省重点实验室 武汉 430074
  • 收稿日期:2022-07-15 修回日期:2022-09-22 出版日期:2023-02-24 发布日期:2022-10-30
  • 基金资助:
    国家自然科学基金项目(52171069); 国家自然科学基金项目(22005109); 中国博士后科学基金(2021M701292)

Progress in Electrochemical Sensing of Ascorbic Acid

Yanyu Zhong, Zhengyun Wang(), Hongfang Liu()   

  1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Materials Chemistry & Service Failure,Wuhan 430074, China
  • Received:2022-07-15 Revised:2022-09-22 Online:2023-02-24 Published:2022-10-30
  • Contact: *e-mail: wzyhustsh@163.com(Zhengyun Wang); liuhf@hust.edu.cn(Hongfang Liu)
  • Supported by:
    National Natural Science Foundation of China(52171069); National Natural Science Foundation of China(22005109); China Postdoctoral Science Foundation(2021M701292)

抗坏血酸是维持人体正常功能的必需生物小分子物质,间接或直接地参与众多人体关键的生物反应过程。电化学检测抗坏血酸具有响应时间快、灵敏度高和操作简单等众多优势,是近些年传感研究的热点。本文系统介绍了安培型电化学传感器的工作原理,综述了近年来抗坏血酸电化学传感的研究进展。基于不同材料构建的抗坏血酸传感器的性能,结合各传感材料的性质,对其传感优缺点进行了分析与总结,最后对抗坏血酸电化学传感的发展方向和趋势进行了展望。

Ascorbic acid (AA), as a necessary biological small molecular substance to maintain the normal function of human body, directly and indirectly participates in many key biological reaction processes of human body. Electrochemical detection of AA has been a hot spot of sensing research in recent years due to the advantages such as fast response, high sensitivity and simple operation. In this review, the working principles of different sensors of AA are systematically and comprehensively introduced, and the recent research progress of electrochemical sensing of AA is reviewed. By comparing different materials based AA sensors performances, the advantages and defects of corresponding materials are analyzed and summarized by combining with the materials properties. Lastly, the outlook of development direction and trend of AA electrochemical sensing is given.

Contents

1 Introduction

2 Principles of electrochemical detection of ascorbic acid

3 Enzymatic sensors

4 Non-enzymatic sensors

4.1 Metal-based sensor

4.2 Conductive polymer-based sensor

4.3 Carbon material-based sensor

5 Conclusion and outlook

()
图1 AA的化学结构及其氧化还原反应过程
Fig.1 Chemical structure and redox reaction process of AA
图2 电催化反应过程(酶型传感器:M:AA-抗坏血酸氧化酶复合物,N:抗坏血酸氧化酶;无酶传感器:M:催化材料,N:被激发后的催化材料)
Fig.2 Electrocatalytic reaction process (enzyme sensor: M: complex of AA and ascorbic acid oxidase, N: ascorbic acid oxidase; nonenzymatic senor: M: catalytic material, N: activated catalytic material)
图3 刺激汗液中抗坏血酸的测定[19]
Fig.3 Ascorbic acid determination in stimulated sweat[19]. Copyright 2020, American Chemical Society
图4 (a) 固定酶的原理[22]; (b) 酶活性位点的电子传递过程[21]
Fig.4 (a) The principle of immobilized enzyme[22]; (b) the electron transfer process of enzyme active site[21]. Copyright 2007, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 可用于营养评估的可穿戴维生素C传感器示意图[32]
Fig.5 Schematic of the wearable vitamin C sensor for nutritional assessment[32]. Copyright 2020, Wiley-VCH GmbH
图6 (A) AuNPs/RGO/SPCEs的SEM图; (B) AuNPs/RGO/SPCEs和裸SPCEs 的CV图; (C) AuNPs/RGO/SPCEs在不同扫描速度下的CV图;(D) 扫描速度与峰值电流的关系[39]
Fig.6 (A) SEM image of Au NPs/RGO/SPCEs; (B) CVs recorded at the AuNPs/RGO/SPCEs and bare SPCEs; (C) CVs recorded from -0.10 to +0.70 V, at different scan rate; (D) plot of iap of B vs ν1/2 and plot of Eap of AA vs logν[39]. Copyright 2020, Elsevier Ltd.
图7 (a)POMOFs的结构及其(b)电化学活性[47]
Fig.7 (a) Structure and (b) electrochemical activity of POMOFs[47]. Copyright 2020, Elsevier Ltd.
图8 (a) 便携式 AA传感器件的部分电路图。(b) 传感器件进行无创人体健康监测概念图[57]
Fig.8 (a) Block diagram of part of the circuitry in the portable enzyme-free AA detection system. (b) Conceptual diagram of sensor devices for non-invasive human health monitoring[57]. Copyright 2020, Elsevier Ltd.
图9 (a)PANI质子酸掺杂机理;(b)PANI与AA的反应机理[63];(c)PANI/MnO2-Sb2O3/FTO的制备流程图[69]
Fig.9 (a) The doping mechanism of PANI proton acid[61]; (b) the reaction mechanism between PANI and AA[63]; (c) preparation process of PANI/MnO2-Sb2O3 /FTO[69]. Copyright 2020, Elsevier Ltd.
图10 (a)在模板分子存在下,通过吡咯的电聚合制备不同的pTS-/PPy MIP(b)将所制备的基于MIP的传感器并入ET传感器阵列,并将其应用于药物样品分析[74]
Fig.10 (a) Preparation of the different pTS-/PPy MIPs by electropolymerization of Py in the presence of the template molecules and (b) incorporation of the fabricated MIP-based sensors into the ET sensor array and its application to the analysis of APIs in pharmaceutical samples[74]. Copyright 2021, Elsevier B.V.
图11 比率电化学传感器的工作原理及电化学性能[79]
Fig.11 Working principle and electrochemical performance of ratio electrochemical sensor[79]. Copyright 2020, American Chemical Society
图12 (a) 基于3D-KSC/CCSBP材料构建AA电化学传感器的过程图及(b) 3D-KSC/CCSBP的形貌[92]
Fig.12 (a) Process diagram of constructing AA electrochemical sensor based on 3D-KSC/CCSBP material and (b) morphology of 3D-KSC/CCSBP[92]. Copyright 2021, Elsevier B.V.
表1 基于不同材料构建的AA传感器的优点和缺陷
Table 1 Advantages and deficiency of AA sensors based on different materials
[1]
Rice M E. Trends Neurosci., 2000, 23(5): 209.

doi: 10.1016/s0166-2236(99)01543-x     pmid: 10782126
[2]
Eggermont J J, Roberts L E. Trends Neurosci., 2004, 27(11): 676.

doi: 10.1016/j.tins.2004.08.010     pmid: 15474168
[3]
Mobley A S, Rodriguez-Gil D J, Imamura F, Greer C A. Trends Neurosci., 2014, 37(2): 77.

doi: 10.1016/j.tins.2013.11.004     pmid: 24361044
[4]
Dutta A, Gautam R, Chatterjee S, Ariese F, Sikdar S K, Umapathy S. ACS Chem. Neurosci., 2015, 6(11): 1794.

doi: 10.1021/acschemneuro.5b00106     URL    
[5]
Du J, Cullen J J, Buettner G R. Bba-Rev. Cancer., 2012, 1826: 443.
[6]
Levine M, Wang Y H, Padayatty S J, Morrow J. PNAS, 2001, 98(17): 9842.

doi: 10.1073/pnas.171318198     pmid: 11504949
[7]
Boekholdt S M, Meuwese M C, Day N E, Luben R, Welch A, Wareham N J, Khaw K T. Br. J. Nutr., 2006, 96: 516.
[8]
Niroula A, Amgain N, KC R, Adhikari S, Acharya J. Food Chem., 2021, 354: 129491.

doi: 10.1016/j.foodchem.2021.129491     URL    
[9]
Zhang H X, Zheng Y, Li R M. Food Chem., 2022, 390: 133206.

doi: 10.1016/j.foodchem.2022.133206     URL    
[10]
Chen L, Wang W W, Zhang J Y, Cui H C, Ni D J, Jiang H Y. Food Chem., 2021, 337: 127639.

doi: 10.1016/j.foodchem.2020.127639     URL    
[11]
Wei Z N, Li H Q, Liu S B, Wang W, Chen H L, Xiao L H, Ren C L, Chen X G. Anal. Chem., 2019, 91(24): 15477.

doi: 10.1021/acs.analchem.9b03272     URL    
[12]
Verdini R A, Lagier C M. J. Agric. Food Chem., 2000, 48(7): 2812.

doi: 10.1021/jf990987s     URL    
[13]
Washko P W, Welch R W, Dhariwal K R, Wang Y H, Levine M. Anal. Biochem., 1992, 204(1): 1.

pmid: 1514674
[14]
Xing L W, Ma Z F. Prog. Chem., 2016, 28: 1705.
(邢立文, 马占芳. 化学进展, 2016, 28: 1705.).

doi: 10.7536/PC160443    
[15]
Endo H, Matsunaga C, Hoshi M, Hayashi T, Takai R K, Watanabe E. Biosens. Bioelectron., 1994, 9(7): 501.

doi: 10.1016/0956-5663(94)90012-4     URL    
[16]
Matsumoto K, Yamada K, Osajima Y. Anal. Chem., 1981, 53(13): 1974.

pmid: 7316205
[17]
Akyilmaz E, Dinçkaya E. Talanta, 1999, 50(1): 87.

pmid: 18967698
[18]
Csiffáry G, Fütö P, Adányi N, Kiss A. Food Technol. Biotechnol., 2016, 54: 31.
[19]
Sempionatto J R, Khorshed A A, Ahmed A, de Loyola e Silva A N, Barfidokht A, Yin L, Goud K Y, Mohamed M A, Bailey E, May J, Aebischer C, Chatelle C, Wang J. ACS Sens., 2020, 5(6): 1804.

doi: 10.1021/acssensors.0c00604     URL    
[20]
Sakurai T. Chem. Lett., 1996, 25(6): 481.

doi: 10.1246/cl.1996.481     URL    
[21]
Santucci R, Ferri T, Morpurgo L, Savini I, Avigliano L. Biochem. J., 1998, 332(3): 611.

doi: 10.1042/bj3320611     URL    
[22]
Murata K, Nakamura N, Ohno H. Electroanalysis, 2007, 19(5): 530.

doi: 10.1002/(ISSN)1521-4109     URL    
[23]
Barberis A, Spissu Y, Bazzu G, Fadda A, Azara E, Sanna D, Schirra M, Serra P A. Anal. Chem., 2014, 86(17): 8727.

doi: 10.1021/ac502066a     pmid: 25088601
[24]
Liu M, Wen Y P, Xu J K, He H H, Li D, Yue R R, Liu G D. Anal. Sci., 2011, 27(5): 477.

doi: 10.2116/analsci.27.477     URL    
[25]
Liu M, Wen Y P, Li D, He H H, Xu J K, Liu C C, Yue R R, Lu B Y, Liu G D. J. Appl. Polym. Sci., 2011, 122(2): 1142.

doi: 10.1002/app.v122.2     URL    
[26]
Liu M, Wen Y P, Li D, Yue R R, Xu J K, He H H. Sens. Actuat. B Chem., 2011, 159(1): 277.

doi: 10.1016/j.snb.2011.07.005     URL    
[27]
Wen Y P, Xu J K, Liu M, Li D, Lu L M, Yue R R, He H H. J. Electroanal. Chem., 2012, 674: 71.

doi: 10.1016/j.jelechem.2012.03.021     URL    
[28]
Wen Y P, Xu J K, Liu M, Li D, He H H. Appl. Biochem. Biotechnol., 2012, 167(7): 2023.

doi: 10.1007/s12010-012-9711-y     URL    
[29]
Patil B, Kobayashi Y, Fujikawa S, Okajima T, Mao L Q, Ohsaka T. Bioelectrochemistry, 2014, 95: 15.

doi: 10.1016/j.bioelechem.2013.10.005     URL    
[30]
Akyilmaz E, Guvenc C, Koylu H. Bioelectrochemistry, 2020, 132: 107420.

doi: 10.1016/j.bioelechem.2019.107420     URL    
[31]
Chauhan N, Narang J, Pundir C S. Anal., 2011, 136(9): 1938.

doi: 10.1039/c0an00218f     URL    
[32]
Zhao J Q, Nyein H Y Y, Hou L, Lin Y J, Bariya M, Ahn C H, Ji W B, Fan Z Y, Javey A. Adv. Mater., 2021, 33(1): 2006444.

doi: 10.1002/adma.v33.1     URL    
[33]
Kim H J, Kim Y K. J. Food Sci., 1988, 53(5): 1525.

doi: 10.1111/jfds.1988.53.issue-5     URL    
[34]
Wawrzyniak J, Ryniecki A, Zembrzuski W. Acta Sci. Pol., Technol. Aliment., 2005, 4: 5.
[35]
Oko D N, Garbarino S, Zhang J M, Xu Z H, Chaker M, Ma D L, Guay D, Tavares A C. Electrochimica Acta, 2015, 159: 174.

doi: 10.1016/j.electacta.2015.01.192     URL    
[36]
Zhao Y W, Qin J H, Xu H, Gao S M, Jiang T T, Zhang S X, Jin J. Microchimica Acta, 2019, 186(1): 1.

doi: 10.1007/s00604-018-3127-5    
[37]
Luo X L, Chen L M, Yang J Y, Li S T, Li M T, Mo Q, Li Y B, Li X C. Microchem. J., 2021, 169: 106623.

doi: 10.1016/j.microc.2021.106623     URL    
[38]
Arroquia A, Acosta I, Armada M P G. Mater. Sci. Eng. C, 2020, 109: 110602.

doi: 10.1016/j.msec.2019.110602     URL    
[39]
Bettazzi F, Ingrosso C, Sfragano P S, Pifferi V, Falciola L, Curri M L, Palchetti I. Food Chem., 2021, 344: 128692.

doi: 10.1016/j.foodchem.2020.128692     URL    
[40]
Eskiköy Bayraktepe D, İnal E K, Yazan Z. Microchem. J., 2021, 171: 106812.
[41]
Rohani T, Taher M A. Talanta, 2009, 78(3): 743.

doi: 10.1016/j.talanta.2008.12.041     URL    
[42]
Selvaraju T, Ramaraj R. Electrochimica Acta, 2007, 52(9): 2998.

doi: 10.1016/j.electacta.2006.09.032     URL    
[43]
Raveendran J, Krishnan R G, Nair B G, Satheesh Babu T G. Microchimica Acta, 2017, 184(9): 3573.

doi: 10.1007/s00604-017-2391-0     URL    
[44]
Öztürk Doğan H, Kurt Urhan B, Çepni E, Eryiğit M. Microchem. J., 2019, 150: 104157.

doi: 10.1016/j.microc.2019.104157     URL    
[45]
dos Santos Franco F, Fernandes D S, Do Carmo D R. Mater. Sci. Eng. C, 2020, 111: 110739.

doi: 10.1016/j.msec.2020.110739     URL    
[46]
Xu X, Li C H, Zhang H, Guo X M. Nanomaterials, 2022, 12(3): 482.

doi: 10.3390/nano12030482     URL    
[47]
Liu Q Q, Lin H Y, Lu J J, Zhang Y C, Wang X L. J. Solid State Chem., 2022, 308: 122911.

doi: 10.1016/j.jssc.2022.122911     URL    
[48]
Elhag S, Ibupoto Z, Nour O, Willander M. Materials, 2014, 8(1): 149.

doi: 10.3390/ma8010149     pmid: 28787929
[49]
Khand N H, Palabiyik I M, Buledi J A, Ameen S, Memon A F, Ghumro T, Solangi A R. J. Nanostructure Chem., 2021, 11(3): 455.

doi: 10.1007/s40097-020-00380-8    
[50]
Tian L, Bian J Y, Wang B B, Qi Y J. Electrochimica Acta, 2010, 55(9): 3083.

doi: 10.1016/j.electacta.2010.01.077     URL    
[51]
Weng Y C, Lee Y G, Hsiao Y L, Lin C Y. Electrochimica Acta, 2011, 56(27): 9937.

doi: 10.1016/j.electacta.2011.08.084     URL    
[52]
Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y. Sensors, 2014, 14(8): 15227.

doi: 10.3390/s140815227     pmid: 25195850
[53]
Huang H P, Yue Y F, Chen Z Z, Chen Y N, Wu S Z, Liao J S, Liu S J, Wen H R. Microchimica Acta, 2019, 186(3): 1.

doi: 10.1007/s00604-018-3127-5    
[54]
Sarıoğulları H, Sengul I F, Gürek A G. New J. Chem., 2021, 45(48): 22714.

doi: 10.1039/D1NJ04052A     URL    
[55]
Zhu K, Wang J, Luo Y H, Zhang Y, Cai X Q, Liu B T, Zhang Q Y, Wu H Y, Liu Z Z, Zhang D E. J. Solid State Chem., 2022, 307: 122745.

doi: 10.1016/j.jssc.2021.122745     URL    
[56]
Motsaathebe P C, Fayemi O E. Nanomaterials, 2022, 12(4): 645.

doi: 10.3390/nano12040645     URL    
[57]
Wang L C, Pan L Y, Han X, Ha M N, Li K R, Yu H, Zhang Q H, Li Y G, Hou C Y, Wang H Z. J. Colloid Interface Sci., 2022, 616: 326.

doi: 10.1016/j.jcis.2022.02.058     URL    
[58]
Jo A, Kang M, Cha A, Jang H S, Shim J H, Lee N S, Kim M H, Lee Y, Lee C. Anal. Chimica Acta, 2014, 819: 94.

doi: 10.1016/j.aca.2014.02.017     URL    
[59]
Hou C, Liu H Y, Zhang D, Yang C, Zhang M Z. J. Alloys Compd., 2016, 666: 178.

doi: 10.1016/j.jallcom.2016.01.092     URL    
[60]
Yin Y Y, Zhao J W, Qin L R, Yang Y, He L Z. RSC Adv., 2016, 6(68): 63358.

doi: 10.1039/C6RA12145D     URL    
[61]
Zhong S S. Master Dissertation of Hunan University, 2016.
(钟莎莎. 湖南大学硕士学位论文, 2016.).
[62]
Sun J J, Zhou D M, Fang H Q, Chen H Y. Talanta, 1998, 45: 851.

pmid: 18967070
[63]
Ambrosi A, Morrin A, Smyth M R, Killard A J. Anal. Chimica Acta, 2008, 609(1): 37.

doi: 10.1016/j.aca.2007.12.017     URL    
[64]
Gao Z Q, Chen B, Zi M X. J. Electroanal. Chem., 1994, 365(1/2): 197.

doi: 10.1016/0022-0728(93)03055-T     URL    
[65]
Chen M, Nie M Y, Li H L. J. Colloid Interface Sci., 1999, 209(2): 421.

doi: 10.1006/jcis.1998.5913     URL    
[66]
Kumar S A, Cheng H W, Chen S M. React. Funct. Polym., 2009, 69(6): 364.

doi: 10.1016/j.reactfunctpolym.2009.03.001     URL    
[67]
Satheesh Babu T G, Varadarajan D, Murugan G, Ramachandran T, Nair B G. J. Appl. Electrochem., 2012, 42(6): 427.

doi: 10.1007/s10800-012-0416-2     URL    
[68]
Zhang X W, Lai G S, Yu A M, Zhang H L. Microchimica Acta, 2013, 180(5/6): 437.

doi: 10.1007/s00604-013-0939-1     URL    
[69]
Puangjan A, Chaiyasith S, Wichitpanya S, Daengduang S, Puttota S. J. Electroanal. Chem., 2016, 782: 192.

doi: 10.1016/j.jelechem.2016.09.019     URL    
[70]
Ensafi A A, Taei M, Khayamian T, Arabzadeh A. Sens. Actuat. B Chem., 2010, 147(1): 213.

doi: 10.1016/j.snb.2010.02.048     URL    
[71]
Chethana B K, Arthoba Naik Y. Anal. Methods, 2012, 4(11): 3754.

doi: 10.1039/c2ay25528f     URL    
[72]
Taei M, Jamshidi M S. Microchem. J., 2017, 130: 108.

doi: 10.1016/j.microc.2016.08.011     URL    
[73]
Shi L, Wu N, Liu W, Yang G, Wang Z. Int. J. Electrochem. Sci., 2021, 16(5): 556.
[74]
Wang M Y, CetÓ X, del Valle M. Biosens. Bioelectron., 2022, 198: 113807.

doi: 10.1016/j.bios.2021.113807     URL    
[75]
Liu X Q. Master Dissertation of Tianjin Normal University, 2015.
(刘小绮. 天津师范大学硕士论文, 2015.).
[76]
Sheng Z H, Zheng X Q, Xu J Y, Bao W J, Wang F B, Xia X H. Biosens. Bioelectron., 2012, 34(1): 125.

doi: 10.1016/j.bios.2012.01.030     pmid: 22342696
[77]
Qi S P, Zhao B, Tang H Q, Jiang X Q. Electrochimica Acta, 2015, 161: 395.

doi: 10.1016/j.electacta.2015.02.116     URL    
[78]
Li F, Li J J, Feng Y, Yang L M, Du Z F. Sens. Actuat. B Chem., 2011, 157(1): 110.

doi: 10.1016/j.snb.2011.03.033     URL    
[79]
Jiang Y M, Xiao X, Li C C, Luo Y, Chen S, Shi G Y, Han K, Gu H. Anal. Chem., 2020, 92(5): 3981.

doi: 10.1021/acs.analchem.9b05484     URL    
[80]
Stojanović G M, Kojić T, Simić M, Jovanović-Galović A, Pavlović B, Zurutuza A, Anzi L C, Sordan R. IEEE Sens. J., 2021, 21(15): 16744.

doi: 10.1109/JSEN.2021.3078692     URL    
[81]
Jiang J J, Ding D, Wang J, Lin X Y, Diao G W. Anal., 2021, 146(3): 964.

doi: 10.1039/D0AN01912G     URL    
[82]
Wang M, Guo H, Wu N, Zhang J, Zhang T, Liu B, Pan Z, Peng L, Yang W. Colloids Surf., A, 2022, 634: 127928.

doi: 10.1016/j.colsurfa.2021.127928     URL    
[83]
Bijad M, Karimi-Maleh H, Khalilzadeh M A. Food Anal. Methods, 2013, 6(6): 1639.

doi: 10.1007/s12161-013-9585-9     URL    
[84]
Naqvi S T R, Shirinfar B, Hussain D, Majeed S, Ashiq M N, Aslam Y, Ahmed N. Electroanalysis, 2019, 31(5): 851.

doi: 10.1002/elan.v31.5     URL    
[85]
Ramakrishnan S, Pradeep K R, Raghul A, Senthilkumar R, Rangarajan M, Kothurkar N K. Anal. Methods, 2015, 7(2): 779.

doi: 10.1039/C4AY02487G     URL    
[86]
Zhang H Q, Huang Q T, Huang Y H, Li F M, Zhang W X, Wei C, Chen J H, Dai P W, Huang L Z, Huang Z Y, Kang L P, Hu S R, Hao A Y. Electrochimica Acta, 2014, 142: 125.

doi: 10.1016/j.electacta.2014.07.094     URL    
[87]
Medeiros R A, Matos R, Benchikh A, Saidani B, Debiemme-Chouvy C, Deslouis C, Rocha-Filho R C, Fatibello-Filho O. Anal. Chimica Acta, 2013, 797: 30.

doi: 10.1016/j.aca.2013.08.018     URL    
[88]
Medeiros R A, Benchick A, Rocha-Filho R C, Fatibello-Filho O, Saidani B, Debiemme-Chouvy C, Deslouis C. Electrochem. Commun., 2012, 24: 61.

doi: 10.1016/j.elecom.2012.08.011     URL    
[89]
Zhang X, Ma L X, Zhang Y C. Electrochimica Acta, 2015, 177: 118.

doi: 10.1016/j.electacta.2015.01.202     URL    
[90]
Spissu Y, Barberis A, Bazzu G, D’hallewin G, Rocchitta G, Serra P A, Marceddu S, Vineis C, Garroni S, Culeddu N. Chemosensors, 2021, 9(12): 354.

doi: 10.3390/chemosensors9120354     URL    
[91]
Xu H, Liu X R, Qin J H, Dong L N, Gao S M, Hou F J, Zhong L L, Jiang T T, Lin N. Microchem. J., 2021, 168: 106494.

doi: 10.1016/j.microc.2021.106494     URL    
[92]
Peng X, Xie Y, Du Y, Song Y H, Chen S H. J. Electroanal. Chem., 2022, 904: 115850.

doi: 10.1016/j.jelechem.2021.115850     URL    
[93]
Li Q, Huo C R, Yi K, Zhou L L, Su L, Hou X M. Sens. Actuat. B Chem., 2018, 260: 346.

doi: 10.1016/j.snb.2017.12.208     URL    
[94]
Cabrita J F, Ferreira V C, Monteiro O C. Electrochimica Acta, 2014, 135: 121.

doi: 10.1016/j.electacta.2014.04.135     URL    
[95]
He Y S, Lin X G, Tang Y, Ye L. Anal. Methods, 2021, 13(38): 4503.

doi: 10.1039/D1AY00849H     URL    
[1] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[2] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[3] 邢立文, 马占芳. 基于碳纳米材料的无酶电化学传感器同时检测抗坏血酸、多巴胺和尿酸[J]. 化学进展, 2016, 28(11): 1705-1711.
[4] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[5] 孙兵, 艾仕云. 光电化学传感器的构建及应用[J]. 化学进展, 2014, 26(05): 834-845.
[6] 尉艳, 刘中刚, 高超, 王伦, 刘锦淮, 黄行九. 纳米材料电化学与生物传感器--有机微污染物检测新途径[J]. 化学进展, 2012, 24(04): 616-627.
[7] 杨海朋,陈仕国,李春辉,陈东成,戈早川. 纳米电化学生物传感器*[J]. 化学进展, 2009, 21(01): 210-216.
[8] 翁文,韩景立,陈友遵,黄晓佳. 手性传感器研究进展*[J]. 化学进展, 2007, 19(11): 1820-1825.
阅读次数
全文


摘要

抗坏血酸电化学传感研究进展