English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 898-908 DOI: 10.7536/PC210401 前一篇   后一篇

• 综述 •

二维纳米材料g-C3N4在电化学发光中的应用研究

林瑜, 谭学才*(), 吴叶宇, 韦富存, 吴佳雯, 欧盼盼   

  1. 广西民族大学化学化工学院 林产化学与工程国家民委重点实验室 广西林产化学与工程重点实验室 广西林产化学与工程协同创新中心 广西高校食品安全与药物分析化学重点实验室 南宁 530008
  • 收稿日期:2021-04-01 修回日期:2021-06-26 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 谭学才
  • 基金资助:
    国家自然科学基金项目(21365004); 广西科技重大专项子课题(桂科 AA18118013-10); 广西重点研发计划项目(桂科 AB18126048); 广西科技基地和人才专项(AD18126005); 广西研究生教育创新计划项目(JGY2019062); 广西高等教育本科教学改革工程项目(2015JGA194); 2021年广西博士研究生创新项目(YCBZ2021060)

Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence

Yu Lin, Xuecai Tan(), Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou   

  1. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
  • Received:2021-04-01 Revised:2021-06-26 Online:2021-07-29 Published:2021-07-29
  • Contact: Xuecai Tan
  • Supported by:
    National Natural Science Foundation of China(21365004); Sub-Project of Guangxi Science and Technology Major Project(AA18118013-10); Guangxi Key Research and Development Program(AB18126048); Guangxi Science and Technology Base and Talents Special Project(AD18126005); Guangxi Graduate Education Innovation Project(JGY2019062); Guangxi Higher Education Undergraduate Teaching Reform Project(2015JGA194); 2021 Guangxi Doctoral Innovation Project(YCBZ2021060)

电化学发光(ECL)兼备电化学和化学发光的特点,灵敏度高、线性范围宽、背景干扰小,得到了广大分析科学研究者的关注;传统的ECL材料虽然发光效率高,但仍存在价格昂贵、负载量低等缺点。g-C3N4是一种不含金属的半导体纳米材料,主要以三嗪环或七嗪环为基本结构单元,通过层间的范德华力以及层内的C—N共价键结合,构成类石墨的二维层状结构,具有性质稳定、能带结构独特、生物兼容性好、环保无毒、易于功能化、原料价廉、制备过程简单等优点。自2012年g-C3N4首次被发现具备ECL的性能,至今已被广泛应用到ECL中。本文根据ECL的发光机理、传感器的作用效果、传感的信号类型以及不同的检测对象进行了分类,综述了近年来g-C3N4在ECL传感器构建中的研究进展,并阐述了g-C3N4在ECL发展中存在的挑战和前景。

Electrochemiluminescence (ECL) combines the characteristics of electrochemistry and chemiluminescence. Because of its high sensitivity, wide linear range and low background interference, electrochemiluminescence has attracted the attention of many researchers in analytical science. Although the traditional luminescent materials of ECL have high luminous efficiency, they still have some disadvantages, such as high price, lower sample load, etc. g-C3N4 is a kind of metal-free semiconductor nanomaterial, which is based on triazine ring or heptazine ring as the basic structural unit. g-C3N4 is a two-dimensional graphite-like layered structure bonded by vander Waals forces between layers and C—N covalent bonds within layers. Since g-C3N4 was first discovered to have ECL performance in 2012, it had been widely used in the development and fabrication of ECL sensors, due to its advantages, such as stable property, unique band structure, good biocompatibility, better environmental performance, easy to function, inexpensive ingredients and simple preparation process. The research progresses of g-C3N4 in ECL sensor construction in recent years were reviewed, according to the mechanism of ECL luminescence, the effect of sensor, the signal type of sensor,and the different types of detection objects. And the challenges and prospects of g-C3N4 in ECL development were described as well.

Contents

1 Introduction

2 Classification according to luminescence mechanism

2.1 ECL cathodic co-reactant

2.2 ECL anode co-reactant

2.3 Other co-reactant

3 Classification according to sensor effect

3.1 Enhanced ECL sensor

3.2 Quenching ECL sensor

3.3 ECL sensors for both enhancement and quenching

4 Classification according to the signal type of the ECL sensor

4.1 Single signal ECL sensor

4.2 Double signal ECL sensor

5 Classification according to the target

5.1 Ions and small molecules

5.2 Nucleic acid

5.3 Protein immune

6 Conclusion and outlook

()
图1 (a) ECL在1964—2002年的发展历程[16]; (b) ECL在2002年至今的发展历程
Fig. 1 (a) The development process of ECL from 1964 to 2002[16]; (b) the development process of ECL from 2002 to present
图2 g-C3N4的两种基本结构单元: (a) 三嗪环(C3N3),(b) 七嗪环(C6N7)
Fig. 2 Two basic structural units of g-C3N4: (a) C3N3, (b) C6N7
图3 (a) 基于Ag-g-C3N4构建检测SCCA的增强型ECL传感器[49]; (b) 基于g-C3N4-CD-Fc-COOH增强型ECL传感器的构建[50]
Fig. 3 (a) The enhanced ECL sensor for SCCA detection based on Ag-g-C3N4[49]; (b) construction process of enhanced ECL sensor based on g-C3N4-CD-Fc-COOH[50]
图4 基于g-C3N4/APBA/PANI的猝灭型ECL传感器的构建[52]
Fig. 4 The construction of quenching ECL sensor based on g-C3N4/APBA/PANI[52]
图5 (a) 先增强后降低的ECL传感器的构建[55];(b) 先猝灭后增强的ECL传感器的构造[56];(c) 先增强后猝灭再增强的ECL传感器的构建[57]
Fig. 5 (a) Construction of ECL sensor which signal increased at the early stage and then decreased[55];(b) construction of ECL sensor which signal decreased at the early stage and then increased[56];(c) construction of ECL sensor which signal enhanced, quenched then increased respectively[57]
图6 基于C60/g-C3N4单信号ECL传感器的构建[60]
Fig. 6 Construction of single signal ECL sensor based on C60/g-C3N4[60]
图7 (a) 基于g-C3N4和Ru(bpy)32+的双波长比率型ECL传感器的构建[61];(b) 基于g-C3N4双电位比率型ECL传感器的构建[48]
Fig. 7 (a) Construction of dual wavelength ratio ECL sensor based on g-C3N4 and Ru(bpy)32+[61];(b) construction of double potential ratio ECL sensor based on g-C3N4[48]
表1 基于g-C3N4的电化学发光传感器在离子或小分子检测中的应用
Table 1 The application of electrochemiluminescence sensor based on g-C3N4 in ions or small molecules detection
Target Material Linear range Detection limit ref
Cu2+ g-C3N4 2.5~100 nmol/L 0.9 nmol/L 31
Cu2+ g-C3N4 42.45~115.54 μmol/L 6.96 μmol/L 65
Cu2+ C,N QDs@g-C3N4 NSs 5 × 10-4~10 μmol/L 2 × 10-4 μmol/L 66
Cu2+ g-C3N4 0~45 nmol/L 1.2 nmol/L 67
Cu2+ g-C3N4/GO 1.0 × 1~1.0 × 1 mol/L 1.0 × 10-11mol/L 68
Pb2+ g-C3N4 QDs@NPG 0.05~20 nmol/L 0.02 nmol/L 69
GSH g-C3N4 0~100 μmol/L 9.6 nmol/L 70
GSH g-C3N4/MnO2 0.2~100 μmol/L 0.05 μmol/L 71
dopamine g-C3N4/MWCNTs 4.0 × 10-10~3.0 × 10-7 mol/L 0.19 nmol/L 42
dopamine g-C3N4/PANI 0.10 pM~5.0 nmol/L 0.033 pmol/L 52
dopamine Ag-g-C3N4 0.015~150 μmol/L 0.005 μmol/L 72
glucose Au-g-C3N4 0.1~8000 μmol/L 0.05 μmol/L 73
dopamine Au NF@g-C3N4-PANI 5.0 × 10-9~1.6 × 10-6 mol/L 1.7 × 10-9 mol/L 74
dopamine g-C3N4-PTCA 6.0 pM~30.0 nmol/L 2.4 pmol/L 75
Pen Hb/Au-g-C3N4 1.0 × 10-4~5.0 × 10-3 mol/L 3.1 × 10-5 mol/L 76
folic acid g-C3N4-rGO 0.1~90 nmol/L 62 pmol/L 77
glucose Ppy/Plu/C3N4-Ni(OH)2/GOx 0.5~500 μmol/L 0.04 μmol/L 78
diclofenac GO-g-C3N4/MWCNTs-AuNPs 0.005~1000 ng/mL 1.7 pg/mL 49
gibberellin Au-g-C3N4 4.0 × 10-14~7.0 × 10-11mol/L 1.64 × 10-14mol/L 79
gatifloxacin rGO-CuS-g-C3N4 1.0 × 10-4~1.0 × 10-8 mol/L 3.5 × 10-9 mol/L 80
adrenaline g-C3N4 /MWCNTs 1.0 × 10-9~1.5 × 10-6 mol/L 0.21 nmol/L 81
riboflavin g-CN QDs 0.02~11 μmol/L 0.63 nmol/L 82
Cu2+ g-C3N4 NSs/GQDs 5.5 × 10-10~4.5 × 10-6 mol/L 3.7 × 10-10 mol/L 83
PFOA MIP@utg-C3N4 0.02~40.0 ng/mL 0.01 ng/mL 84
BPA C-g-C3N4 0.1 pM~1 nmol/L 30 fmol/L 85
fipronil ZnO@g-C3N4 5~1000 nmol/L 1.5 nmol/L 86
Aflatoxin g-C3N4 0.005~10 ng/mL 0.004 ng/mL 87
图8 基于g-C3N4的ECL基因检测传感器的构建[88]
Fig. 8 Construction of ECL gene detection sensor based on g-C3N4[88]
表2 基于g-C3N4的ECL传感器在蛋白免疫的应用
Table 2 The application of electrochemiluminescence immunosensor based on g-C3N4
[1]
Pavlos N, Giovanni V, Francesco P. Electrochim. Acta, 2021, 388: 138586.

doi: 10.1016/j.electacta.2021.138586     URL    
[2]
Hyun S N, Taemin K, Jong-In H. Sensor. Actuat. B: Chem, 2021, 342: 129868.

doi: 10.1016/j.snb.2021.129868     URL    
[3]
Emily K, Ryan F, Egan H D, Yi H N, Richard A, Rosanne M G, Beatriz P S, Paul S F, Megan D, David J H, Luke C H. Sensor. Actuat. B: Chem, 2021, 330: 129261.

doi: 10.1016/j.snb.2020.129261     URL    
[4]
Sakda J, Nattaya N, Sirirat R, Orawon C, Kurt K, Sudkate C. Biosens. Bioelectron, 2021, 188: 113323.

doi: 10.1016/j.bios.2021.113323     URL    
[5]
Kaoru H, Kosuke I, Keika K, Yuji N, Hitoshi S. Biosens. Bioelectron, 2021, 188: 113123.
[6]
Yan B V, Nadim D, Simone C. Cell Rep. Phys. Sci, 2020, 1(7): 100107.
[7]
Fumiki T, Ryo S, Tomoyuki N, Jiye J. Ultrason. Sonochem., 2020, 63: 104947.

doi: 10.1016/j.ultsonch.2019.104947     URL    
[8]
Bahareh B, Delnia B, Abdollah S. Biosens. Bioelectron., 2019, 142: 111530.

doi: 10.1016/j.bios.2019.111530     URL    
[9]
Youngwon J, Hee-Jun P, Ik-Soo S, Young K C, Joohoon K. Inorg. Chem. Commun., 2019, 106: 86.

doi: 10.1016/j.inoche.2019.05.033    
[10]
Hasan M, Sima Z, Masoud A M, Abolghasem A K, Abdol-Khalegh B. Biosens. Bioelectron, 2018, 118: 217.

doi: 10.1016/j.bios.2018.07.066     URL    
[11]
Elena V, Giovanni V, Massimo M, Luca M, Simona B, Denis G, Sandro C, Francesco P. Electrochim. Acta, 2018, 277: 168.

doi: 10.1016/j.electacta.2018.04.215     URL    
[12]
Morteza H, Mohammad R K P, Parviz N, Mohammad R M, Mohammad R G. Mat. Sci. Eng. C, 2017, 76: 483.

doi: 10.1016/j.msec.2017.03.070     URL    
[13]
Cyrille B, Jophrette M N N, Anicet M M, Calixte B, Guy M M, Bolni M N. Asian Pac. J. Trop. Bio., 2017, 7(9): 805.
[14]
Mohtashim H S, Kihwan C, Alphonsus H C N, M Dean C, Aaron R W. Biosens. Bioelectron., 2016, 77: 845.

doi: 10.1016/j.bios.2015.10.036     pmid: 26516684
[15]
Carvajal M A, Ballesta-Claver J, Martínez-Olmos A, Capitán-Vallvey L F, Palma A J. Sens. Actuat. B: Chem., 2015, 221: 956.

doi: 10.1016/j.snb.2015.07.038     URL    
[16]
Wu J M. Chem. Rev., 2008, 108(7): 2506.

doi: 10.1021/cr068083a     URL    
[17]
Feng D F, Wei F C, Wu Y Y, Tan X C, Li F, Lu Y K, Fan G C, Han H Y. Anal., 2021, 146(4): 1295.

doi: 10.1039/D0AN02158J     URL    
[18]
Feng D F, Li P H, Tan X C, Wu Y Y, Wei F C, Du F K, Ai C H, Luo Y N, Chen Q Y, Han H Y. Anal. Chimica Acta, 2020, 1100: 232.

doi: 10.1016/j.aca.2019.11.069     URL    
[19]
Du F K, Zhang H, Tan X C, Feng D F, Luo Y N. J. Anal. Chem., 2020, 48(2): 240.
(杜方凯, 张慧, 谭学才, 冯德芬, 罗燕妮. 分析化学, 2020, 48(2): 240.).
[20]
Feng D F, Tan X C, Wu Y Y, Ai C H, Luo Y N, Chen Q Y, Han H Y. Biosens. Bioelectron., 2019, 129: 100.

doi: 10.1016/j.bios.2018.12.050     URL    
[21]
Du F K, Zhang H, Tan X C, Ai C H, Li M R, Yan J, Liu M, Wu Y Y, Feng D F, Liu S G, Han H Y. J. Solid State Electrochem., 2019, 23(8): 2579.

doi: 10.1007/s10008-019-04352-z     URL    
[22]
Ai C H, Wu Y Y, Tan X C, Feng D F, Chen Q Y, Luo Y N. Chinese Journal of Analysis Laboratory, 2019, 38(5): 513.
(艾晨昊, 吴叶宇, 谭学才, 冯德芬, 陈全友, 罗燕妮. 分析试验室, 2019, 38(5): 513.).
[23]
Du F K, Zhang H, Tan X C, Yan J, Liu M, Chen X, Wu Y Y, Feng D F, Chen Q Y, Cen J M, Liu S G, Qiu Y Q, Han H Y. Biosens. Bioelectron., 2018, 106: 50.

doi: 10.1016/j.bios.2018.01.059     URL    
[24]
Feng D F, Wu Y Y, Tan X C, Chen Q Y, Yan J, Liu M, Ai C H, Luo Y N, Du F K, Liu S G, Han H Y. Sens. Actuat. B: Chem., 2018, 265: 378.

doi: 10.1016/j.snb.2018.03.046     URL    
[25]
Wu Y Y, Li X Y, Tan X C, Feng D F, Yan J, Zhang H, Chen X, Huang Z Y, Han H Y. Electrochim. Acta, 2018, 282: 672.

doi: 10.1016/j.electacta.2018.06.104     URL    
[26]
Li X Y, Tan X C, Yan J, Hu Q, Wu J W, Zhang H, Chen X. Electrochim. Acta, 2016, 187: 433.

doi: 10.1016/j.electacta.2015.11.082     URL    
[27]
Zhang H, Tan X C, Yan J, Liu M, Li X Y, Chen X, Feng D F, Cen J M, Chen Q Y, Wei Y B. Journal of Instrumental Analysis, 2016, 35(12): 1616.
(张慧, 谭学才, 严军, 刘敏, 李晓宇, 陈晓, 冯德芬, 岑建梅, 陈全友, 魏耀秘. 分析测试学报, 2016, 35(12): 1616.).
[28]
Zhang H, Tan X C, Yan J, Liu M, Li X Y, Chen X. Journal of Instrumental Analysis, 2016, 35(6): 769.
(张慧, 谭学才, 严军, 刘敏, 李晓宇, 陈晓. 分析测试学报, 2016, 35(6): 769.).
[29]
Li X Y, Tan X C, Yan J, Hu Q, Wu J W, Zhang H, Chen X. Chinese Journal of Analysis Laboratory, 2015, 34(10): 1127.
( 李晓宇, 谭学才, 严军, 胡琪, 吴佳雯, 张慧, 陈晓. 分析试验室, 2015, 34(10): 1127.).
[30]
Li T, Tan X C, Hu Q, Wu J W, Fang X X, Liu S G, Yu H C, Huang Z Y. Journal of Instrumental Analysis, 2014, 33(2): 212.
(李焘, 谭学才, 胡琪, 吴佳雯, 方晓雪, 刘绍刚, 余会成, 黄在银. 分析测试学报, 2014, 33(2): 212.).
[31]
Cheng C M, Huang Y, Tian X Q, Zheng B Z, Li Y, Yuan H Y, Xiao D, Xie S P, Choi M M F. Anal. Chem., 2012, 84(11): 4754.

doi: 10.1021/ac300205w     URL    
[32]
Cheng C M, Huang Y, Wang J, Zheng B Z, Yuan H Y, Xiao D. Anal. Chem., 2013, 85(5): 2601.

doi: 10.1021/ac303263n     URL    
[33]
Shang Q W, Zhou Z X, Shen Y F, Zhang Y Y, Li Y, Liu S Q, Zhang Y J. ACS Appl. Mater. Interfaces, 2015, 7(42): 23672.

doi: 10.1021/acsami.5b07405     URL    
[34]
Chen P P, Xia F Q, Tian D, Zhou C L. J. Electrochem. Soc., 2018, 165(5): B196.

doi: 10.1149/2.0531805jes     URL    
[35]
Zhou M, Pu Y X, Wu Q, Wang P J, Liu T T, Zhang M X. Sens. Actuat. B: Chem., 2020, 319: 128298.

doi: 10.1016/j.snb.2020.128298     URL    
[36]
Cao J T, Fu X L, Zhao L Z, Ma S H, Liu Y M. Sens. Actuat. B: Chem., 2020, 311: 127926.

doi: 10.1016/j.snb.2020.127926     URL    
[37]
Wang Y Z, Zhao W, Dai P P, Lu H J, Xu J J, Pan J, Chen H Y. Biosens. Bioelectron., 2016, 86: 683.

doi: 10.1016/j.bios.2016.07.067     URL    
[38]
Sun Y, Zhang Y M, Zhang H X, Liu M L, Liu Y. Anal. Chem., 2020, 92(15): 10668.

doi: 10.1021/acs.analchem.0c01776     URL    
[39]
Yu L D, Liang R P. Nanchang Univ. Nat. Sci., 2018, 42(1):27.
(于禄丹, 梁汝萍. 南昌大学学报(理科版), 2018, 42(1): 27.).
[40]
Guo X. Master Dissertation of Shandong Normal University, 2017.
(郭欣丽. 山东师范大学硕士论文, 2017.).
[41]
Wu L, Hu Y F, Sha Y H, Li W R, Yan T T, Wang S, Li X, Guo Z Y, Zhou J, Su X R. Talanta, 2016, 160: 247.

doi: 10.1016/j.talanta.2016.07.023     URL    
[42]
Wang Y. Master Dissertation of Shanghai Normal University, 2020.
(王彦. 上海师范大学硕士论文, 2020.).
[43]
Wu Q, Wang P J, Yang X, Wei M, Zhou M, Pu Y X, Zhang M X. Sens. Actuat. B: Chem., 2019, 297: 126767.

doi: 10.1016/j.snb.2019.126767     URL    
[44]
Liu Q, Peng Y J, Xu J C, Ma C, Li L L, Mao C J, Zhu J J. ChemElectroChem, 2017, 4(7): 1768.

doi: 10.1002/celc.201700035     URL    
[45]
Liu Y T, Wang Q B, Lei J P, Hao Q, Wang W, Ju H X. Talanta, 2014, 122: 130.

doi: 10.1016/j.talanta.2014.01.018     URL    
[46]
Liu J L, Jiang J, Zhang J Q, Chai Y Q, Xiao Q, Yuan R. Biosens. Bioelectron., 2020, 152: 112006.

doi: 10.1016/j.bios.2020.112006     URL    
[47]
Wu Q. Master Dissertation of Southwest University, 2020.
( 吴前. 西南大学硕士论文, 2020.).
[48]
Wang H, Pu G Q, Devaramani S, Wang Y F, Yang Z F, Li L F, Ma X F, Lu X Q. Anal. Chem., 2018, 90(7): 4871.

doi: 10.1021/acs.analchem.8b00517     URL    
[49]
Wang J, Wang H X, Cao W N, Zhang Q Q, Zhong W Y. Talanta, 2020, 212: 120798.

doi: 10.1016/j.talanta.2020.120798     URL    
[50]
Wang B X, Wang H J, Zhong X, Chai Y Q, Chen S H, Yuan R. Chem. Commun., 2016, 52(28): 5049.

doi: 10.1039/C5CC10491B     URL    
[51]
Li Y, Liang R P. Nanchang Univ. Nat. Sci., 2017, 41(03):230.
(李颖, 梁汝萍. 南昌大学学报(理科版), 2017, 41(03):230.).
[52]
Zuo F M, Jin L, Fu X M, Zhang H, Yuan R, Chen S H. Sens. Actuat. B: Chem., 2017, 244: 282.

doi: 10.1016/j.snb.2017.01.001     URL    
[53]
Li X J, Guo Z K, Li J X, Zhang Y, Ma H M, Pang X H, Du B, Wei Q. Anal. Chimica Acta, 2015, 854: 40.

doi: 10.1016/j.aca.2014.11.018     URL    
[54]
Xia B Y, Yuan Q M, Chu M F, Wang S F, Gao R, Yang S L, Liu C B, Luo S L. Sens. Actuat. B: Chem., 2016, 228: 565.

doi: 10.1016/j.snb.2016.01.014     URL    
[55]
Hu L Y, Zheng J, Zhao K, Deng A P, Li J N. Biosens. Bioelectron., 2018, 101: 260.

doi: 10.1016/j.bios.2017.10.043     URL    
[56]
Xu H F, Zhu X, Dong Y Q, Wu H S, Chen Y M, Chi Y W. Sens. Actuat. B: Chem., 2016, 236: 8.

doi: 10.1016/j.snb.2016.05.056     URL    
[57]
Xu H F, Liang S J, Zhu X, Wu X Q, Dong Y Q, Wu H S, Zhang W X, Chi Y W. Biosens. Bioelectron., 2017, 92: 695.

doi: 10.1016/j.bios.2016.10.026     URL    
[58]
Sha H F, Zhang Y, Wang Y F, Ke H, Xiong X, Jia N Q. Biosens. Bioelectron., 2019, 124/125: 59.

doi: 10.1016/j.bios.2018.10.023     URL    
[59]
Fu X L. Master Dissertation of Xinyang Normal University, 2020.
(付晓龙. 信阳师范学院硕士论文, 2020.).
[60]
Fu X M, Gu Z C, Lu Q Y, Liao J Y, Chen S H. RSC Adv., 2016, 6(16): 13217.

doi: 10.1039/C5RA19344C     URL    
[61]
Feng Q M, Shen Y Z, Li M X, Zhang Z L, Zhao W, Xu J J, Chen H Y. Anal. Chem., 2016, 88(1): 937.

doi: 10.1021/acs.analchem.5b03670     URL    
[62]
Wang Y F, Zhang Y, Sha H F, Xiong X, Jia N Q. ACS Appl. Mater. Interfaces, 2019, 11(40): 36299.

doi: 10.1021/acsami.9b09492     URL    
[63]
Zhang C, Liu D, Zhang H, Tan X R, Chen S H. Microchimica Acta, 2019, 186(12): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[64]
Wang Y Z, Hao N, Feng Q M, Shi H W, Xu J J, Chen H Y. Biosens. Bioelectron., 2016, 77: 76.

doi: 10.1016/j.bios.2015.08.057     URL    
[65]
Wu W W. Master Dissertation of Nanjing University, 2018.
(吴婉婉. 南京大学硕士论文, 2018.).
[66]
Fang L, Xue Y, Hu X M, Xie D, Li W J. J. Mater. Sci.: Mater. Electron., 2018, 29(24): 20580.
[67]
Cheng N Y, Jiang P, Liu Q, Tian J Q, Asiri A M, Sun X P. Anal., 2014, 139(20): 5065.

doi: 10.1039/C4AN00914B     URL    
[68]
Xia B Y, Chu M F, Wang S F, Wang W Q, Yang S L, Liu C B, Luo S L. Anal. Chimica Acta, 2015, 891: 113.

doi: 10.1016/j.aca.2015.05.054     URL    
[69]
Zhang Y, Zhang L N, Kong Q K, Ge S G, Yan M, Yu J H. Anal. Bioanal. Chem., 2016, 408(25): 7181.

doi: 10.1007/s00216-016-9718-2     pmid: 27356927
[70]
Tang Y R, Song H J, Su Y Y, Lv Y. Anal. Chem., 2013, 85(24): 11876.

doi: 10.1021/ac403517u     URL    
[71]
Fu X L, Hou F, Liu F R, Ren S W, Cao J T, Liu Y M. Biosens. Bioelectron., 2019, 129: 72.

doi: 10.1016/j.bios.2019.01.010     URL    
[72]
Wang Y F, Guo W W, Jia N Q. ChemElectroChem, 2018, 5(23): 3786.

doi: 10.1002/celc.201800877     URL    
[73]
Jiang J J. Doctoral Dissertation of Nanjing University, 2015.
(江婧婧, 南京大学博士论文, 2015.).
[74]
Lu Q Y, Zhang J J, Liu X F, Wu Y Y, Yuan R, Chen S H. Anal., 2014, 139(24): 6556.

doi: 10.1039/C4AN01595A     URL    
[75]
Fu X M, Feng J H, Tan X R, Lu Q Y, Yuan R, Chen S H. RSC Adv., 2015, 5(53): 42698.

doi: 10.1039/C5RA03154K     URL    
[76]
Lin X, Zhu S, Wang Q H, Xia Q, Ran P Y, Fu Y Z. Colloids Surf. B: Biointerfaces, 2016, 148: 371.

doi: 10.1016/j.colsurfb.2016.09.013     URL    
[77]
Zhou C, Chen Y M, Shang P X, Chi Y W. Anal., 2016, 141(11): 3379.

doi: 10.1039/C6AN00664G     URL    
[78]
Hamtak M, Hosseini M, Fotouhi L, Aghazadeh M. Anal. Methods, 2018, 10(47): 5723.

doi: 10.1039/C8AY01849A     URL    
[79]
Xie H. Z, Yang B, Li J. P. Chinese Journal of Analytical Chemistry, 2020, 48(12): 1633.

doi: 10.1016/S1872-2040(20)60065-2     URL    
(谢汉钊, 杨斌, 李建平. 分析化学, 2020, 48(12): 1633.).
[80]
Jiang L H, Mo G C, Yu C H, Ya D M, He X X, Mo W M, Deng B Y. Colloids Surf. B: Biointerfaces, 2019, 173: 378.

doi: 10.1016/j.colsurfb.2018.10.003     URL    
[81]
Sun Y N, Wang Y, Yang Y W, Yang M L. Chem. Lett., 2019, 48(3): 215.

doi: 10.1246/cl.180893     URL    
[82]
Wang H, Ma Q, Wang Y F, Wang C H, Qin D D, Shan D L, Chen J, Lu X Q. Anal. Chimica Acta, 2017, 973: 34.

doi: 10.1016/j.aca.2017.03.041     URL    
[83]
Sun Y N. Master Dissertation of Shanghai Normal University, 2019.
(孙亚楠. 上海师范大学硕士论文, 2019.).
[84]
Chen S H, Li A M, Zhang L Z, Gong J M. Anal. Chimica Acta, 2015, 896: 68.

doi: 10.1016/j.aca.2015.09.022     URL    
[85]
Cao H X, Wang L, Pan C G, He Y S, Liang G X. Microchimica Acta, 2018, 185(10): 1.

doi: 10.1007/s00604-017-2562-z     URL    
[86]
Yin J H, Chen X H, Chen Z D. Microchem. J., 2019, 145: 295.

doi: 10.1016/j.microc.2018.09.030     URL    
[87]
Tian D Y. Master Dissertation of Beijing Jiaotong University, 2021.
(田东岩. 北京交通大学硕士论文, 2021.).
[88]
Wang Y H, Zhang L N, Shen L, Ge S G, Yu J H, Yan M. Microchimica Acta, 2017, 184(8): 2587.

doi: 10.1007/s00604-017-2234-z     URL    
[89]
Pan C G. Master Dissertation of Jiangsu University, 2019.
(潘常刚. 江苏大学硕士论文, 2019.).
[90]
Sui C J. Master Dissertation of Shandong Agriculture University, 2020.
( 隋程吉. 山东农业大学硕士论文, 2020.).
[91]
Gao J W, Xiong H W, Zhang W, Wang Y, Wang H X, Wen W, Zhang X H, Wang S F. Carbon, 2018, 130: 416.

doi: 10.1016/j.carbon.2018.01.026     URL    
[92]
Jin Y C, Kang Q, Guo X L, Zhang B, Shen D Z, Zou G Z. Anal. Chem., 2018, 90(21): 12930.

doi: 10.1021/acs.analchem.8b03554     URL    
[93]
Chen L C, Zeng X T, Si P, Chen Y M, Chi Y W, Kim D H, Chen G N. Anal. Chem., 2014, 86(9): 4188.

doi: 10.1021/ac403635f     URL    
[94]
Li X J, Zhang X Y, Ma H M, Wu D, Zhang Y, Du B, Wei Q. Biosens. Bioelectron., 2014, 55: 330.

doi: 10.1016/j.bios.2013.12.039     URL    
[95]
Li X J, Guo Z K, Li J X, Zhang Y, Ma H M, Pang X H, Du B, Wei Q. Anal. Chimica Acta, 2015, 854: 40.

doi: 10.1016/j.aca.2014.11.018     URL    
[96]
Fan Y, Tan X R, Ou X, Lu Q Y, Chen S H, Wei S P. Electrochim. Acta, 2016, 202: 90.

doi: 10.1016/j.electacta.2016.04.013     URL    
[97]
Ou X, Tan X R, Liu X F, Lu Q Y, Chen S H, Wei S P. Biosens. Bioelectron., 2015, 70: 89.

doi: 10.1016/j.bios.2015.03.021     URL    
[98]
Chen L. Master Dissertation of Shandong Normal University, 2020.
(陈璐. 山东师范大学硕士论文, 2020.).
[99]
Xie S D, Wang F, Wu Z Y, Joshi L, Liu Y. RSC Adv., 2016, 6(39): 32804.

doi: 10.1039/C6RA05249E     URL    
[100]
Qin H X. Master Dissertation of Qingdao University Science Technology, 2020.
(秦海新. 青岛科技大学硕士论文, 2020.).
[101]
Zhou X M, Zhang W, Wang Z, Han J, Xie G, Chen S P. Biosens. Bioelectron., 2020, 148: 111795.

doi: 10.1016/j.bios.2019.111795     URL    
[102]
Wang Y Z. Doctoral Dissertation of Nanjing University, 2018.
(王银珠. 南京大学博士论文, 2018.).
[103]
Zhu X D. Master Dissertation of Jinan University, 2020.
(朱晓冬. 济南大学硕士论文, 2020.).
[104]
Wu L, Sha Y H, Li W R, Wang S, Guo Z Y, Zhou J, Su X R, Jiang X H. Sens. Actuat. B: Chem., 2016, 226: 62.

doi: 10.1016/j.snb.2015.11.133     URL    
[105]
Gao H M. Master Dissertation of Wuhan University Science Technology, 2020.
(高宏民. 武汉科技大学硕士论文, 2020.).
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[9] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[10] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[11] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[12] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[13] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[14] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.
[15] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.