English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 393-400 DOI: 10.7536/PC230917 前一篇   后一篇

• 综述 •

三蝶烯基电致发光材料

徐慧慧, 汪青松, 茆俊杰, 童碧海*(), 张千峰*()   

  1. 安徽工业大学冶金工程学院 分子工程与应用化学研究所 马鞍山 243002
  • 收稿日期:2023-09-28 修回日期:2023-10-27 出版日期:2024-03-24 发布日期:2024-01-20
  • 作者简介:

    童碧海 博士,教授,硕士生导师。主要研究方向为金属有机电致发光材料,开发了一系列超高性能的双三齿铱配合物有机电致发光材料,围绕哒嗪类铱配合物的合成及性能提升进行了系统性研究工作,开发了从绿光到红光的系列高性能有机电致发光材料。在Adv. Mater.J. Mater. Chem. CInorg. Chem. Front.Dyes PigmentsDalton Trans.等期刊上发表多篇论文。

  • 基金资助:
    国家自然科学基金项目(21572001)

Triptycene Based Electroluminescent Materials

Huihui Xu, Qingsong Wang, Junjie Mao, Bihai Tong(), Qianfeng Zhang()   

  1. Institute of Molecular Engineering and Applied Chemistry, School of Metallurgy Engineering, Anhui University of Technology, Maanshan 243002, China
  • Received:2023-09-28 Revised:2023-10-27 Online:2024-03-24 Published:2024-01-20
  • Contact: * e-mail: tongbihai@ahut.edu.cn (Bihai Tong);zhangqf@ahut.edu.cn (Qianfeng Zhang)
  • Supported by:
    National Natural Science Foundation of China(21572001)

有机电致发光二极管具有自发光、效率高、结构轻薄,能实现透明、柔性等多样化设计等优点,在显示和照明等领域具有广阔的应用前景。三蝶烯是由三个苯环通过饱和碳连接而成的稳定、三维、刚性结构,且三个苯环间的共轭非常小,三个苯环上取代基不同还能实现非常稳定的手性,能为高性能发光材料的设计提供理想的刚性三维骨架,以提升发光材料的稳定性、调控发光材料分子间相互作用力(降低浓度淬灭同时提高成膜性)和稳定的手性环境。本文综述了将三蝶烯基团融入到电致发光电子传输层及发光层材料分子中的研究进展,并对三蝶烯基电致发光材料的未来进行了展望。通过分析和总结三蝶烯基团对材料性能的影响,明确其优势,以期抛砖引玉,使更多科研工作者将三蝶烯的优势在未来的新材料领域继续发扬光大。

Organic light-emitting diodes (OLEDs) have the advantages of self-luminous, high efficiency, light and thin structure, and can achieve diverse designs such as transparency and flexibility. They have broad application prospects in fields such as display and lighting. Triptycene is a stable, three-dimensional, and rigid structure formed by connecting three benzene rings through saturated carbon, and the conjugation between the three benzene rings is very small. Different substituents on the three benzene rings can also achieve very stable chirality. The triptycene group can provide an ideal rigid three-dimensional framework for the design of high-performance luminescent materials, in order to enhance the stability of luminescent materials, regulate intermolecular interactions (reduce concentration quenching while improving film formation), and maintain a stable chiral environment. In this paper, the research progress of incorporating triptycene group into electroluminescent electron transport layer and light-emitting layer material molecules is reviewed. The future of triptycene based electroluminescent materials is also prospected. By analyzing and summarizing the influence of triptycene group on material properties, its advantages are identified, so as to play a role in attracting more researchers to carry forward the advantages of triptycene in the field of new materials in the future.

Contents

1 Introduction

2 The host materials and electron transport materials with triptycene group

3 Fluorescent materials with triptycene group

4 TADF materials with triptycene group

5 Iridium complex phosphorescent materials with triptycene group

()
图1 三蝶烯的分子结构[2]
Fig. 1 Molecular structure of triptycene[2]
图2 三蝶烯基主体材料及电子传输材料的分子结构[7,8]
Fig. 2 Molecular structure of the host materials and electron transport materials with triptycene group[7,8]
图3 三蝶烯基吡嗪衍生物的分子结构及其在固态和正己烷溶液中的荧光照片[8]
Fig. 3 Molecular structure of triptycene-based pyrazine derivatives and their fluorescence photographs in solid state and n-hexane solution[8], Copyright 2015, Journal of Organic Chemistry
图4 三蝶烯基噻咯衍生物的分子结构及其粉末在不同状态下的荧光照片[10]
Fig. 4 Molecular structure of triptycene-based silole derivatives and fluorescence photographs of their powders in different states[10], Copyright 2020, Materials Chemistry Frontiers
图5 三蝶烯骨架上同时连接给体和受体的TADF材料分子结构[12,15?~17]
Fig. 5 Molecular structure of TADF materials with simultaneous connection of donor and acceptor on the triptycene skeleton[12,15?~17]
图6 三蝶烯骨架上只连接给体或受体的TADF材料分子结构[19???~23]
Fig. 6 The molecular structure of TADF materials with only donor or acceptor connections on the triptycene skeleton[19???-23]
图7 三蝶烯基手性TADF材料分子结构[27??~30]
Fig. 7 Molecular structure of triptycene-based chiral TADF materials[27??~30]
图8 含三蝶烯基团的铱配合物分子结构[31,32,33,34]
Fig. 8 Molecular structure of iridium complexes containing triptycene groups[31,32,33,34]
[1]
Bartlett P D, Ryan M J, Cohen S G. J. Am. Chem. Soc., 1942, 64(11): 2649.

doi: 10.1021/ja01263a035     URL    
[2]
Wittig G, Ludwig R. Angew. Chem., 1956, 68(1): 40.
[3]
Gu M J, Wang Y F, Han Y, Chen C F. Org. Biomol. Chem., 2021, 19(46): 10047.

doi: 10.1039/D1OB01818C     URL    
[4]
(a) Li T Y, Wu J, Wu Z G, Zuo J L, Pan Y. Coordination Chemistry Reviews, 2018, 374: 55.

doi: 10.1016/j.ccr.2018.06.014     URL    
(b) Chen D, Li W, Gan L, Wang Z, Li M, Su S J. Materials Science & Engineering R-reports, 2020, 142: 100581.
[5]
Baldo M A, O’Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151.

doi: 10.1038/25954     URL    
[6]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.

doi: 10.1038/nature11687    
[7]
Chou H H, Shi H H, Cheng C H. Journal of materials Chemistry, 2010, 20(4): 798.

doi: 10.1039/B918188A     URL    
[8]
Jayakumar J, Wu W L, Chang C L, Han T Y, Ting L Y, Yeh C M, Hung H W, Chou H H. Org. Electron., 2021, 88: 106013.

doi: 10.1016/j.orgel.2020.106013     URL    
[9]
Biegger P, Stolz S, Intorp S N, Zhang Y X, Engelhart J U, Rominger F, Hardcastle K I, Lemmer U, Qian X H, Hamburger M, Bunz U H F. J. Org. Chem., 2015, 80(1): 582.

doi: 10.1021/jo502564w     URL    
[10]
Amro K, Thakur A K, Rolland M, Van Der Lee A, Lemaur V, Lazzaroni R, Rault-Berthelot J, Poriel C, Hirsch L, Clément S, Gerbier P. Mater. Chem. Front., 2020, 4(7): 2006.

doi: 10.1039/D0QM00087F     URL    
[11]
Mistry J R, Montanaro S, Wright I A. Mater. Adv., 2023, 4(3): 787.

doi: 10.1039/D2MA00523A     URL    
[12]
Kawasumi K, Wu T, Zhu T Y, Chae H S, Van Voorhis T, Baldo M A, Swager T M. J. Am. Chem. Soc., 2015, 137(37): 11908.

doi: 10.1021/jacs.5b07932     URL    
[13]
Voll C C A, Engelhart J U, Einzinger M, Baldo M A, Swager T M. Eur. J. Org. Chem., 2017, 2017(32): 4846.

doi: 10.1002/ejoc.v2017.32     URL    
[14]
Gao Y, Su T, Wu Y, Geng Y, Zhang M, Su Z M. Chem. Phys. Lett., 2016, 666: 7.

doi: 10.1016/j.cplett.2016.10.069     URL    
[15]
Dai G L, Zhang M, Wang K, Fan X C, Shi Y Z, Sun D M, Liu W, Chen J X, Yu J, Ou X M, Xiong S Y, Zheng C J, Zhang X H. ACS Appl. Mater. Interfaces, 2021, 13(21): 25193.

doi: 10.1021/acsami.1c05646     URL    
[16]
Wada Y, Nakagawa H, Matsumoto S, Wakisaka Y, Kaji H. Nat. Photonics, 2020, 14(10): 643.

doi: 10.1038/s41566-020-0667-0    
[17]
Huang Y Y, Zhang D H, Tao X D, Wei Z Z, Jiang S S, Meng L Y, Yang M X, Chen X L, Lu C Z. Dyes Pigm., 2022, 204: 110397.

doi: 10.1016/j.dyepig.2022.110397     URL    
[18]
Mubarok H, Amin A, Lee T, Jung J, Lee J H, Lee M H. Angewandte Chemie, 2023, e202306879.
[19]
Huang W, Einzinger M, Zhu T, Chae H S, Jeon S, Ihn S G, Buchwald S L. Chemistry of Materials, 2018, 30(5): 1462.

doi: 10.1021/acs.chemmater.7b03490     URL    
[20]
Zhan Q, Cao C, Huang T A, Zhou C J, Xie Z Y, Zou Y, Lee C S, Yang C L. Adv. Opt. Mater., 2021, 9(16): 2100273.

doi: 10.1002/adom.v9.16     URL    
[21]
Jing Y Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2021, 413: 127418.

doi: 10.1016/j.cej.2020.127418     URL    
[22]
Wang Y J, Pan Z H, Tao Z Y,. Wang Y,. Tong B H,. Feng M Q,. Song M X. Chemical Journal of Chinese Universities Chinese, 2023, 44(4): 20220562.
(王英杰, 潘泽晖, 陶正煜, 王妍, 童碧海, 冯敏强, 宋明星. 高等学校化学学报, 2023, 44(4): 20220562.)
[23]
Ji S C, Zhao T X, Wei Z Z, Meng L Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2022, 435: 134868.

doi: 10.1016/j.cej.2022.134868     URL    
[24]
(a) Montanaro S, Pander P, Mistry J R, Elsegood M R J, Teat S J, Bond A D, Wright I A, Congrave D G, Etherington M K. J. Mater. Chem. C, 2022, 10(16): 6306.

doi: 10.1039/D2TC00460G     URL    
(b) Montanaro S, Congrave D G, Etherington M K, Wright I A. Journal of Materials Chemistry, 2019, 7(41): 12886
[25]
Li M, Chen C F. Org. Chem. Front., 2022, 9(22): 6441.

doi: 10.1039/D2QO01383E     URL    
[26]
Zhang Y P, Zheng Y X. Dalton Trans., 2022, 51(26): 9966.

doi: 10.1039/D2DT01582J     URL    
[27]
Wang Y F, Li M, Teng J M, Zhou H Y, Chen C F. Adv. Funct. Mater., 2021, 31(49): 2106418.

doi: 10.1002/adfm.v31.49     URL    
[28]
Wang Y F, Li M, Teng J M, Zhou H Y, Zhao W L, Chen C F. Angew. Chem. Int. Ed., 2021, 60(44): 23619.

doi: 10.1002/anie.v60.44     URL    
[29]
Wang Y F, Chen C, Cui L Y, Teng J M, Li M, Lu H Y, Chen C F. Org. Electron., 2021, 99: 106355.

doi: 10.1016/j.orgel.2021.106355     URL    
[30]
Zhang S H, Chen J F, Hu G F, Zhang N, Wang N, Yin X D, Chen P K. Organometallics, 2022, 41(2): 99.

doi: 10.1021/acs.organomet.1c00447     URL    
[31]
Wang Y, Xiao Y P, Zhou Y Y, Hu C G, Tong B H, Ye S H, Mei Q B. Dalton Trans., 2019, 48(43): 16289.

doi: 10.1039/C9DT03182K     URL    
[32]
Zhou Y Y, Xu D Y, Cheng W, Wang Y, Tong B H, He G F, Tian Y P. New J. Chem., 2020, 44(20): 8587.

doi: 10.1039/D0NJ01930E     URL    
[33]
Mei Q B, Liu L, Yang J C, Jiang X Y, Ye S H, Zhang L, Tong B H. Dyes Pigm., 2022, 199: 110075.

doi: 10.1016/j.dyepig.2021.110075     URL    
[34]
Tao Z Y, Pan Z H, Wang Y J, Zhang J L, Wang Q S, Zhang Q F, Tong B H, Fung M K, Kong H. Inorg. Chem. Front., 2023, 10(1): 49.

doi: 10.1039/D2QI01786E     URL    
[35]
Chen M, Zhang F J, Zhang M, Wang Y, Wang P, Wang S, Tong B H, Chen P, Kong H. Dyes Pigm., 2023, 214: 111205.

doi: 10.1016/j.dyepig.2023.111205     URL    
[1] 汤炜, 邴研, 刘旭东, 姜鸿基. 基于二苯甲酮框架的多功能有机发光材料[J]. 化学进展, 2023, 35(10): 1461-1485.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[6] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[7] 杨智文, 詹迎迎, 籍少敏, 杨庆旦, 李琦, 霍延平. 含硼有机发光二极管材料与器件[J]. 化学进展, 2019, 31(6): 906-928.
[8] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[9] 汪含笑, 韩莹, 陈传峰*. 基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建[J]. 化学进展, 2018, 30(5): 616-627.
[10] 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 基于给-受体结构的热活化延迟荧光材料[J]. 化学进展, 2016, 28(12): 1811-1823.
[11] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[12] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[13] 王光霞, 车延科, 江华. 旋转型单分子机器[J]. 化学进展, 2014, 26(06): 909-918.
[14] 廖章金, 朱彤珺, 密保秀, 高志强, 范曲立, 黄维. 小分子铱配合物及其电致发光[J]. 化学进展, 2011, 23(8): 1627-1643.
阅读次数
全文


摘要

三蝶烯基电致发光材料