English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 909-918 DOI: 10.7536/PC140123 前一篇   后一篇

• 特约稿 •

旋转型单分子机器

王光霞1, 车延科*1, 江华*1,2   

  1. 1. 中国科学院化学研究所 北京 100190;
    2. 北京师范大学化学学院 北京 100875
  • 收稿日期:2014-02-01 修回日期:2014-03-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 车延科, 江华 E-mail:ykche@iccas.ac.cn;jiangh@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21125205,21332008)资助

Single Molecular Rotary Machine

Wang Guangxia1, Che Yanke*1, Jiang Hua*1,2   

  1. 1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2014-02-01 Revised:2014-03-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21125205, 21332008)

分子机器是一种分子水平上的机器,它是一类通过外部刺激(如化学能、电能、光照等)将能量转化为可控运动的分子器件。由于人工分子机器在纳米科技领域的应用越来越普遍,已经引起人们的广泛关注。人工合成的分子机器在模拟机器运动时主要有线性运动和旋转运动两种基本运动方式,本文重点介绍了几种旋转型的单分子机器,包括分子齿轮、分子转门、分子闸和分子棘轮、分子马达等。这类分子机器的结构特点是由轴、转子和定子三部分组成,其运动特点是转子通过轴围绕定子进行双向或单向旋转。本文在介绍这类分子转子的同时,简单讨论了其设计理念和在溶液状态下所表现出的动力学行为,同时还展望了分子转子和分子马达的发展前景和面临的挑战。

The concept of a machine can be extended to the molecular level. A molecular-level machine can be defined as an assembly of molecular components designed to perform mechanical-like movements as a consequence of appropriate external stimuli, such as chemical energy, electrical energy and light. Artificial molecular machines show potential applications in the field of nanotechnology, which attract chemists with great interest. The two basic movements of artificial molecular machines are linear motion and rotary motion. We limit our discussion to the rotary motion and describe the different types of rotary motors in this review. The structure of this rotational molecular machine consists of axis, a rotator and a stator. The rotator winds around the stator through the axis in the way of bidirectional or unidirectional rotation. We describe the designs and dynamic behaviors of single molecular rotary machines in solution, which mainly include molecular gear, motor, molecular turnstile, molecular brake and ratchet.

Contents
1 Introduction
2 Molecular gears
2.1 Bevel gear
2.2 Spur gear
3 Molecular turnstile
4 Molecular brake and ratchet
4.1 Molecular brake
4.2 Molecular ratchet
5 Molecular motor
5.1 Chemical-driven molecular motor
5.2 Light-driven molecular motor
6 Conclusion and outlook1 Introduction
2 Molecular gears
2.1 Bevel gear
2.2 Spur gear
3 Molecular turnstile
4 Molecular brake and ratchet
4.1 Molecular brake
4.2 Molecular ratchet
5 Molecular motor
5.1 Chemical-driven molecular motor
5.2 Light-driven molecular motor
6 Conclusion and outlook1 Introduction
2 Molecular gears
2.1 Bevel gear
2.2 Spur gear
3 Molecular turnstile
4 Molecular brake and ratchet
4.1 Molecular brake
4.2 Molecular ratchet
5 Molecular motor
5.1 Chemical-driven molecular motor
5.2 Light-driven molecular motor
6 Conclusion and outlook

中图分类号: 

()

[1] Feynman R P. Eng. Sci., 1960, 23: 22.
[2] Sauvage J P. Acc. Chem. Res., 1998, 31: 611.
[3] Ballardini R, Balzani V, Credi A, Gandolfi M T, Venturi M. Acc. Chem. Res., 2001, 34: 445.
[4] Kelly T R. Acc. Chem. Res., 2001, 34: 514.
[5] Kottas G S, Clarke L I, Horinek D, Michl J. Chem. Rev., 2005, 105: 1281.
[6] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[7] Michl J, Sykes E C H. ACS Nano, 2009, 3: 1042.
[8] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[9] Zheng Y B, Hao Q Z, Yang Y W, Kiraly B, Chiang I K, Huang T J. J. Nanophoton., 2010, 4: 042501.
[10] Balzani V, Gomez-Lopez M, Stoddart J F. Acc. Chem. Res.,1998, 31: 405.
[11] Balzani V, Credi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000, 39: 3348.
[12] 马骧(Ma X),王巧纯(Wang Q C),田禾(Tian H). 化学进展(Progress in Chemistry), 2009, 21: 106.
[13] 田禾(Tian H),王利民(Wang L M),译(Trans.). 分子器件与分子机器通向纳米世界的捷径(Molecular Devices and Machines A Journey into the Nanoworld). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2005.
[14] Kottas G S, Clarke L I, Horinek D, Michl J. Chem. Rev., 2005, 105: 1281.
[15] Wenz G, Han B H, Mller A. Chem. Rev., 2006, 106: 782.
[16] Balzani V, Credi A, Silvi S, Venturi M. Chem. Soc. Rev., 2006, 35: 1135.
[17] Feringa B L. J. Org. Chem., 2007, 72: 6635.
[18] Credi A, Tian H. Adv. Funct. Mater., 2007, 17: 679.
[19] 张鑫然(Zhang X R).[2014-01-01]. http://ub1010.51.net/science/other/fenzijiqi.htm
[20] Kelly T R, Michael C, Bowyer K, Vijaya B, David B, Albert G, Fengrui L, Min H K, Michael P J. J. Am. Chem. Soc., 1994, 116: 3657.
[21] Yang C H, Prabhakar C, Huang S L, Lin Y C, Tan W S, Misra N C, Sun W T, Yang J S. Org. Lett., 2011, 13: 5632.
[22] Sun W T, Huang S L, Yao H H, Chen I C, Lin Y C, Yang J S. Org. Lett., 2012, 14/16: 4154.
[23] Parag V J, Richard E B, Dallas K B. J. Org. Chem., 2003, 68: 8240.
[24] Harrington L E, Cahill L S, McGlinchey M J. Organometallics, 2004, 23: 2884.
[25] Nikitin K, Müller B H, Ortin Y, Muldoon J, McGlinchey M J. J. Am. Chem. Soc., 2010, 132: 17617.
[26] Kelly T R, Silva D H, Silva R A. Nature, 1999, 401: 150.
[27] Richard A D, Matthijs K J W, Pollard M M, Vicario J, Koumura N, Feringa B L. Nature, 2005, 437: 1337.
[28] Huck N P M, Jager W F, Lange B, Feringa B L. Science, 2001, 273: 1686.
[29] Wiel M K J, Delden R A, Meetsma A, Feringa B L. J. Am. Chem. Soc., 2005, 127: 14208.
[30] Feringa B L. J. Org. Chem., 2007, 72: 6635.
[31] Klok M, Boyle N, Pryce M T, Meetsma A, Browne W R, Feringa B L. J. Am. Chem. Soc., 2008, 130: 10484.
[32] Dominguez Z, Dang H, Strouse M J, Garcia-Garibay M A. J. Am. Chem. Soc., 2002, 124: 2398.
[33] Gould S L, Tranchemontagne D, Yaghi O M, Garcia-Garibay M A. J. Am. Chem. Soc., 2008, 130: 3246.
[34] O'Brien Z J, Natarajan A, Khan S, Garcia-Garibay M A. Cryst. Growth. Des., 2011, 11: 2654.
[35] Hughs M, Jimenez M, Khan S, Garcia-Garibay Miguel A. J. Org. Chem., 2013, 78: 5293.
[36] Shima T, Hampel F, Gladysz J A. Angew. Chem. Int. Ed., 2004, 43: 5537.
[37] Nawara A J, Shima T, Frank H, Gladysz J A. J. Am. Chem. Soc., 2006, 128: 4962.
[38] Hess G D, Hampel F, Gladysz J A. Organometallics, 2007, 26: 5129.
[39] Dial B E, Rasberry R D, Bullock B N, Smith M D, Pellechia P J, Profeta S Jr, Shimizu K D. Org. Lett., 2011, 13: 244.
[40] Setaka W, Yamaguchi K. J. Am. Chem. Soc., 2012, 134: 12458.
[41] Setaka W, Koyama A, Yamaguchi K. Org. Lett., 2013, 15: 5092.
[42] Setaka W, Yamaguchi K. J. Am. Chem. Soc., 2013, 135: 14560.
[43] Anelli P L, Spencer N, Stoddart J F. J. Am. Chem. Soc., 1991, 113: 5131.
[44] Sauvage J P. Science, 2001, 291: 2105.
[45] Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2007, 129: 6396.
[46] Gao C, Ma X, Zhang Q, Wang Q C, Qu D H, Tian H. Org. Bio. Chem., 2011, 9: 1126.
[47] Zhang H, Zhou B, Li H, Qu D H, Tian H. J. Org. Chem., 2013, 78: 2091.
[48] Sun R Y, Xue C M, Ma X, Gao M, Tian H, Li Q. J. Am. Chem. Soc., 2013, 135: 5990.
[49] Gan Q, Bao C, Brice K, Axelle G, Xiang J F, Liu S H, Ivan H, Jiang H. Angew. Chem. Int. Ed. Engl., 2008, 120: 1739.
[50] Gan Q, Ferrand Y, Bao C Y, Brice K, Axelle G, Jiang H, Ivan H. Science, 2011, 331: 1172.
[51] Joosten A, Trolez Y, Collin J P, Heitz V, Sauvage J P. J. Am. Chem. Soc., 2012, 134: 1802.
[52] Daniela S, Andrew G W L, John E W. Science, 1999, 286: 1700.
[53] Yoshihiro S, Yuko I, Mikio T, Hiroshi O, Atsuko I K, Ikuo U, Toshio Y, Yoh W, Masamitsu F. Science, 1999, 286: 1722.
[54] Pijper D, Feringa B L. Angew. Chem. Int. Ed., 2007, 46: 3693.
[55] Wang J B, Feringa B L. Science, 2011, 331: 1429.
[56] Zhang D, Zhang Q, Su J H, Tian H. Chem. Commun., 2009, 1700.
[57] Landge S M, Aprahamian I. J. Am. Chem. Soc., 2009, 131: 18269.
[58] Balzani V, Credi A, Raymo F M, Stoddart J F. Angew Chem. Int. Ed., 2000, 39: 3349.
[59] Browne W R, Feringa B L. Nat. Nanotechnol., 2006, 1: 25.
[60] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[61] Khuong T V, Nunez J E, Godinez C E, Garcia-Garibay M A. Acc. Chem. Res., 2006, 39: 413.
[62] 邓超(Deng C),韩军(Han J), 滕明瑜(Teng M Y),赵德阳(Zhao D Y),王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2010, 22: 1021.
[63] Sauvage J P. Molecular Machines and Motors. See Kelly T R, Sestelo J P. 2001. 99: 19.
[64] Yamamoto G, Suzuki M, Oki M. Angew. Chem. Int. Ed. Engl., 1981, 20: 607.
[65] Cozzi F, Guenzi A, Johnson C A, Mislow K. J. Am. Chem. Soc., 1981, 103: 957.
[66] Kawada Y, Iwamura H. J. Am. Chem. Soc., 1981, 103: 950.
[67] Koga N, Kawada Y, Iwamura H. J. Am. Chem. Soc., 1983, 105: 5498.
[68] Setaka W, Nirengi T, Kabuto C, Kira M. J. Am. Chem. Soc., 2008, 130: 15762.
[69] Kao C Y, Hsu Y T, Lu H F, Chao I, Huang S L, Lin Y C, Sun W T, Yang J S. J. Org. Chem., 2011, 76: 5782.
[70] Frantz D K, Baldridge K K, Siegel J S. Chimia, 2009, 63: 201.
[71] Frantz D K, Linden A, Baldridge K K, Siegel J S. J. Am. Chem. Soc., 2012, 134: 1528.
[72] Bedard T C, Moore J S. J. Am. Chem. Soc., 1995, 117: 10662.
[73] Guenet A, Graf E, Kyritsakas N, Hosseini M W. Inorg. Chem., 2010, 49: 1872.
[74] Lang T, Guenet A, Graf E, Kyritsakas N, Hosseini M W. Chem. Commun., 2010, 46: 3508.
[75] Guenet A, Graf E, Kyritsakas N, Hosseini M W. Chem. Eur. J., 2011, 17: 6443.
[76] Lang T, Graf E, Kyritsakas N, Hosseini M W. Dalton Trans., 2011, 40: 3517.
[77] Lang T, Graf E, Kyritsakas N, Hosseini M W. Dalton Trans., 2011, 40: 5244.
[78] Lang T, Graf E, Kyritsakas N, Hosseini M W. Chem. Eur. J., 2012, 18: 10419.
[79] Yang J S, Huang Y H, Ho J H, Sun W T, Huang H H, Lin Y C, Huang S J, Huang S L, Lu H F, Chao I. Org. Lett., 2008, 10: 2279.
[80] Dial B E, Pellechia P J, Smith M D, Shimizu K D. J. Am. Chem. Soc., 2012, 134: 3675.
[81] Kelly T R, Tellitu I, Sestelo J P. Angew. Chem. Int. Ed., 1997, 36: 1866.
[82] Kelly T R, Sestelo J P, Tellitu I. J. Org. Chem., 1998, 63: 3655.
[83] Kelly T R, Silva D H, Silva R A. Nature, 1999, 401: 150.
[84] Kelly T R, Cai X, Damkaci F, Panicker S B, Tu B, Bushell S M, Cornella I, Piggott M J, Salives R, Cavero M, Zhao Y J, Jasmin S. J. Am. Chem. Soc., 2007, 129: 376.
[85] Fletcher S P, Dumur F, Pollard M M, Feringa B L. Science, 2005, 310: 80.
[86] Koumura N, Zijlstra R W J, Richard A D, Harada N, Feringa B L. Nature, 1999, 401: 152.
[87] Koumura N, Edzard M G, Marc B G, Meetsma A, Feringa B L. J. Am. Chem. Soc., 2002, 124: 5037.
[88] Richard A D, Nina P M H, Jacob J P, John M W, Stefan C J M, Harry P J M D, Feringa B L. J. Am. Chem. Soc., 2003, 125: 15659.
[89] Dirk P, Richard A D, Auke M, Feringa B L. J. Am. Chem. Soc., 2005, 127: 17612.
[90] Artem A K, Emile M M, Martin K, Auke M, Albert M B, Feringa B L. J. Org. Chem., 2010, 75: 666.
[91] Tatiana F L, London G, Michael M P, Petra R, Feringa B L. J. Org. Chem., 2010, 75: 5323.
[92] Anouk S L, Nopporn R, Giuseppe G, Feringa B L. J. Org. Chem., 2011, 76: 8599.
[93] Lewandowski B, Guillaume D B, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D' Souza D M, Fernandes A E, Leigh D A. Science, 2013, 339: 189.

[1] 汪含笑, 韩莹, 陈传峰*. 基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建[J]. 化学进展, 2018, 30(5): 616-627.
[2] 张双进, 杨扬, 孙小强, 尹芳华, 强琚莉, 王乐勇. 酸碱驱动的分子机器研究与应用[J]. 化学进展, 2016, 28(2/3): 244-259.
[3] 杨再文, 刘向荣, 赵顺省, 何金梅. 化学驱动的[2]轮烷型分子梭[J]. 化学进展, 2014, 26(12): 1899-1913.
[4] 孙涛 张华承 李月明 辛飞飞 孔丽 郝爱友. 基于环糊精和富勒烯偶联体系的新型分子机器*[J]. 化学进展, 2010, 22(11): 2156-2164.
[5] 邓超 韩军 滕明瑜 赵德阳 王乐勇. 分子陀螺的设计、合成与组装[J]. 化学进展, 2010, 22(06): 1021-1034.
[6] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
阅读次数
全文


摘要

旋转型单分子机器