English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1811-1823 DOI: 10.7536/PC160520 前一篇   后一篇

• 综述与评论 •

基于给-受体结构的热活化延迟荧光材料

姜贺1, 靳继彪1, 陈润锋1*, 郑超1, 黄维1,2*   

  1. 1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子和信息显示协同创新中心 南京 210023;
    2. 南京工业大学先进材料研究院 江苏省柔性电子重点实验室 先进生物与化学制造协同创新中心 南京 211816
  • 收稿日期:2016-05-01 修回日期:2016-10-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 陈润锋,e-mail:iamrfchen@njupt.edu.cn;黄维,e-mail:wei-huang@njtech.edu.cn E-mail:iamrfchen@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21274065,21304049)资助

Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures

Jiang He1, Jin Jibiao1, Chen Runfeng1*, Zheng Chao1, Huang Wei1,2*   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2016-05-01 Revised:2016-10-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274065, 21304049).
热活化延迟荧光(TADF)材料由于第一单线态(S1)与三线态激发态(T1)之间的能级差较小,使得三线态激子能够有效地系间窜越至单线态发光,实现100%的激子利用率,在有机发光二极管(OLED)等领域得到广泛应用,是目前有机电子学研究的热点之一。基于给-受体(D-A)结构构建TADF材料具有分子设计简便、易于制备、性能优异等特点,引起了人们的普遍关注。本文综述了基于D-A结构设计TADF材料的基本原则,依据给受体构筑单元的不同,概括了各类TADF材料的结构和性能特点以及在器件应用等方面的最新研究进展,最后总结了D-A结构型TADF材料尚存在的问题,并对其未来的关键研究方向进行了分析和展望。
Thermally activated delayed fluorescence (TADF) materials, capable of efficient reverse intersystem crossing (RISC) from the lowest triplet excited state (T1) to the lowest singlet excited state (S1) to use triplet excitons for photoluminescence with theoretically 100% exciton harvesting in emission, have attracted great attention in recent research of organic electronics, especially in the field of organic light emitting diodes (OLEDs). The singlet-triplet energy splitting (ΔEST) between S1 and T1 should be low, which is a key point to facilitate the RISC process in tuning triplet excitons to singlet excitons for delayed fluorescence emission. With the significant advantages of convenient molecular design, easy preparation, rich optoelectronic properties, and excellent device performance, TADF materials with donor-acceptor (D-A) molecular structures are of central importance in the current development of high-performance TADF molecules. In this article, we review the basic molecular design principles of the D-A type TADF materials and summarize their molecular structure characteristics, optoelectronic properties and device application performance in the latest research progress, according to the varied types of acceptor building blocks. Finally, the existing problems, future opportunities and key challenges of TADF materials with D-A architectures are discussed to give a full view of this kind of new organic optoelectronic materials.

Contents
1 Introduction
2 Basic principles of TADF materials and applications
3 Molecular design of D-A type TADF materials
4 Intramolecular D-A type TADF molecules
4.1 Cyano-based TADF molecules
4.2 Nitrogen heterocycle-based TADF molecules
4.3 Diphenyl sulfoxide-based TADF molecules
4.4 Diphenyl ketone-based TADF molecules
4.5 10H-Phenoxaborin-based TADF molecules
5 Intermolecular D-A type TADF materials
6 D-A type TADF polymers
7 Conclusion

中图分类号: 

()
[1] Parker C A, Hatchard C G. Trans. Faraday Soc., 1961, 57:1894.
[2] Blasse G, McMillin D R. Chem. Phys. Lett., 1980, 70:1.
[3] Berberan-Santos M N, Garcia J M M. J. Am. Chem. Soc., 1996, 118:9391.
[4] Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21:4802.
[5] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492:234.
[6] Zhang Q, Kuwabara H, Potscavage W J, Huang S, Hatae Y, Shibata T, Adachi C. J. Am. Chem. Soc., 2014, 136:18070.
[7] Lee D R, Kim B S, Lee C W, Im Y, Yook K S, Hwang S, Lee J Y. Appl. Mater. Inter., 2015, 7:9625.
[8] Lee D R, Kim M, Jeon S K, Hwang S, Lee C W, Lee J Y. Adv. Mater., 2015, 27:5861.
[9] Nishide J, Nakanotani H, Hiraga Y, Adachi C. Appl. Phys. Lett., 2014, 104:233304.
[10] Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F. Adv. Mater., 2004, 16:432.
[11] Parker C A. Photoluminescence of Solutions. Elsevier Publishng Company, 1968.
[12] Valeur B, Berberan-Santos M N. Molecular Fluorescence:Principles and Applications. 2nd ed. NY:John Wiley & Sons, 2013.
[13] Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26:7931.
[14] Lin T, Chatterjee T, Tsai W, Lee W, Wu M, Jiao M, Pan K, Yi C, Chung C, Wong K, Wu C. Adv. Mater., 2016, 28:6976.
[15] Wu S, Aonuma M, Zhang Q, Huang S, Nakagawa T, Kuwabara K, Adachi C. J. Mater. Chem. C., 2014, 2:421.
[16] Murawski C, Leo K, Gather M C. Adv. Mater., 2013, 25:6801.
[17] Xie G, Li X, Chen D, Wang Z, Cai X, Chen D, Li Y, Liu K, Cao Y, Su S. Adv. Mater., 2016, 28:181.
[18] Wang H, Meng L, Shen X, Wei X, Zheng X, Lv X, Yi Y, Wang Y, Wang P. Adv. Mater., 2015, 27:4041.
[19] Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat. Photonics., 2014, 8:326.
[20] Erickson N C, Holmes R J. Adv. Funct. Mater., 2014, 24:6074.
[21] Zhang D, Duan L, Li Y, Li H, Bin Z, Zhang D, Qiao J, Dong G, Wang L, Qiu Y, Adv. Funct. Mater., 2014, 24:3551.
[22] Komino T, Nomura H, Koyanagi T, Adachi C. Chem. Mater., 2013, 25:3038.
[23] Tao Y, Xu L, Zhang Z, Chen R F, Li H H, Xu H, Zheng C, Huang W. J. Am. Chem. Soc., 2016, 138:9655.
[24] Leitl M J, Krylova V A, Djurovich P I, Thompson M E, Yersin H. J. Am. Chem. Soc., 2014, 136:16032.
[25] Chen T, Zheng L, Yuan J, An Z, Chen R, Tao Y, Li H, Xie X, Huang W. Sci. Rep. UK, 2015, 5:10923.
[26] Yao L, Yang B, Ma Y. Science China Chemistry, 2014, 57:335.
[27] Cho Y J, Yook K S, Lee J Y. Adv. Mater., 2014, 26:4050.
[28] Tang C, Yang T, Cao X, Tao Y, Wang F, Zhong C, Qian Y, Zhang X, Huang W. Adv. Opt. Mater., 2015, 3:786.
[29] Tao Y, Guo X, Hao L, Chen R, Li H, Chen Y, Zhang X, Lai W, Huang W. Adv. Mater., 2015, 27:6939.
[30] Klessinger M. Angew. Chem. Int. Edit., 1995, 34:549.
[31] Dias F B, Jankus V, Kamtekar K T, Santos J, Monkman A P. Adv. Mater., 2013, 25:3707.
[32] Saragi T, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Chem. Rev., 2007, 107:1011.
[33] Zhang Q S, Li J, Shizu K, Huang S P, Hirata S, Miyazaki H, Adachi C. J. Am. Chem. Soc., 2012, 134:14706.
[34] Lee S Y, Yasuda T, Yang Y S, Zhang Q, Adachi C. Angew. Chem. Int. Edit., 2014, 53:6402.
[35] Wang H, Xie L, Peng Q, Meng L, Wang Y, Yi Y, Wang P. Adv. Mater., 2014, 26:5198.
[36] Numata M, Yasuda T, Adachi C. Chem. Commun., 2015, 51:9443.
[37] Sun J W, Baek J Y, Kim K, Moon C, Lee J, Kwon S, Kim Y, Kim J. Chem. Mater., 2015, 27:6675.
[38] Lee J, Shizu K, Tanaka H, Nomura H, Yasuda T, Adachi C. J. Mater. Chem. C., 2013, 1:4599.
[39] Takahashi T, Shizu K, Yasuda T, Togashi K, Adachi C. Sci. Technol. Adv. Mater., 2014, 15:34202.
[40] Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv. Mater., 2013, 25:3319.
[41] Sagara Y, Shizu K, Tanaka H, Miyazaki H, Goushi K, Kaji H, Adachi C. Chem. Lett., 2015, 44:360.
[42] Kawasumi K, Wu T, Zhu T, Chae H S, van Voorhis T, Baldo M A, Swager T M. J. Am. Chem. Soc., 2015, 137:11908.
[43] Ohkuma H, Nakagawa T, Shizu K, Yasuda T, Adachi C. Chem. Lett., 2014, 43:1017.
[44] Li G, Kim C H, Zhou Z, Shinar J, Okumoto K, Shirota Y. Appl. Phys. Lett., 2006, 88:253505.
[45] Goushi K, Yoshida K, Sato K, Adachi C. Nat. Photonics., 2012, 6:253.
[46] Yassar A, Demanze F, Jaafari A, El Idrissi M, Coupry C. Adv. Funct. Mater., 2002, 12:699.
[47] Thomas K, Velusamy M, Lin J T, Tao Y T, Cheun C H. Adv. Funct. Mater., 2004, 14:387.
[48] Nakagawa T, Ku S Y, Wong K T, Adachi C. Chem. Commun., 2012, 48:9580.
[49] Mehes G, Nomura H, Zhang Q S, Nakagawa T, Adachi C. Angew. Chem. Int. Edit., 2012, 51:11311.
[50] Li B, Nomura H, Miyazaki H, Zhang Q, Yoshida K, Suzuma Y, Orita A, Otera J, Adachi C. Chem. Lett., 2014, 43:319.
[51] Cho Y J, Jeon S K, Chin B D, Yu E, Lee J Y. Angew. Chem. Int. Edit., 2015, 54:5201.
[52] Huang W, Meng H, Yu W L, Gao J, Heeger A J. Adv. Mater., 1998, 10:593.
[53] An Z F, Chen R F, Yin J, Xie G H, Shi H F, Tsuboi T, Huang W. Chem. Eur. J., 2011, 17:10871.
[54] Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl. Phys. Lett., 2011, 98:083302.
[55] Xiang Y P, Gong S L, Zhao Y B, Yin X J, Luo J J, Wu K L, Lu Z H, Yang C L. J. Mater. Chem. C., 2016, DOI:10.1039/C6TC02702D.
[56] Wong K, Wu C, Tsai W, Huang M, Hsu Y, Pan K, Huang Y, Ting H, Sarma M, Ho Y, Hu H, Chen C, Lee M, Lee W. Chem. Commun., 2015, 51:13662.
[57] Albrecht K, Matsuoka K, Fujita K, Yamamoto K. Angew. Chem. Int. Edit., 2015, 54:5677.
[58] Kulkarni A P, Tonzola C J, Babel A, Jenekhe S A. Chem. Mater., 2004, 16:4556.
[59] Zhu R, Wen G A, Feng J C, Chen R F, Zhao L, Yao H P, Fan Q L, Wei W, Peng B, Huang W. Macromol. Rapid Comm., 2005, 26:1729.
[60] Obolda A, Peng Q M, He C Y, Zhang T, Ren J J, Ma H W, Shuai Z G, Li F. Adv. Mater., 2016, 28:4740.
[61] Tanaka H, Shizu K, Lee J, Adachi C. The Journal of Physical Chemistry C, 2015, 119:2948.
[62] Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Angew. Chem. Int. Edit., 2015, 54:13068.
[63] Shizu K, Tanaka H, Uejima M, Sato T, Tanaka K, Kaji H, Adachi C. The Journal of Physical Chemistry C, 2015, 119:1291.
[64] Yu L, Wu Z, Xie G, Zhong C, Zhu Z, Cong H, Ma D, Yang C. Chem. Commun., 2016, 52, 11012.
[65] Xu S, Liu T, Mu Y, Wang Y, Chi Z, Lo C, Liu S, Zhang Y, Lien A, Xu J. Angew. Chem. Int. Edit., 2015, 54:874.
[66] Zhang Q, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T, Adachi C. Adv. Mater., 2015, 27:2096.
[67] Nasu K, Nakagawa T, Nomura H, Lin C J, Cheng C H, Tseng M R, Yasuda T, Adachi C. Chem. Commun., 2013, 49:10385.
[68] Kinoshita M, Kita H, Shirota Y. Adv. Funct. Mater., 2002, 12:780.
[69] Nagai A, Kobayashi S, Nagata Y, Kokado K, Taka H, Kita H, Suzuri Y, Chujo Y. J. Mater. Chem., 2010, 20:5196.
[70] Kitamoto Y, Namikawa T, Ikemizu D, Miyata Y, Suzuki T, Kita H, Sato T, Oi S. J. Mater. Chem. C, 2015, 3:9122.
[71] Liu X K, Chen Z, Zheng C J, Liu C L, Lee C S, Li F, Ou X M, Zhang X H. Adv.Mater., 2015, 27:2378.
[72] Liu W, Chen J, Zheng C, Wang K, Chen D, Li F, Dong Y, Lee C, Ou X, Zhang X. Adv. Funct. Mater., 2016, 26:2002.
[73] Chen D, Xie G, Cai X, Liu M, Cao Y, Su S. Adv. Mater., 2016, 28:239.
[74] Wang S, Wang X, Yao B, Zhang B, Ding J, Xie Z, Wang L. Sci. Rep. UK., 2015, 5:12487.
[75] Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv. Mater., 2015, 27:7236.
[76] Luo J, Xie G, Gong S, Chen T, Yang C. Chem. Commun., 2016, 52:2292.
[77] Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S, Monkman A P, Bryce M R, Dias F B. Adv. Opt. Mater., 2016, 4:597.
[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[3] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[4] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[5] 杨智文, 詹迎迎, 籍少敏, 杨庆旦, 李琦, 霍延平. 含硼有机发光二极管材料与器件[J]. 化学进展, 2019, 31(6): 906-928.
[6] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[7] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[8] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[9] 廖章金, 朱彤珺, 密保秀, 高志强, 范曲立, 黄维. 小分子铱配合物及其电致发光[J]. 化学进展, 2011, 23(8): 1627-1643.