English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 616-627 DOI: 10.7536/PC171201 前一篇   后一篇

• 综述 •

基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建

汪含笑, 韩莹, 陈传峰*   

  1. 中国科学院化学研究所 北京 100190
  • 收稿日期:2017-12-01 修回日期:2018-01-09 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 陈传峰e-mail:cchen@iccas.ac.cn E-mail:cchen@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21332008,91527301,21521002)资助

The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts

Hanxiao Wang, Ying Han, Chuanfeng Chen*   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2017-12-01 Revised:2018-01-09 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21332008, 91527301, 21521002).
在主客体化学中,控制络合过程的异构化现象不仅可以简化和调整所构建的组装体的结构,而且对其顺利执行作为分子机器时的功能也具有极其重要的意义。具有三维不对称结构的主体与线性不对称客体络合时,由于客体穿线方向的不同会导致方向性异构体的形成。这一现象引起了研究者们的兴趣,并对如何通过理性设计主客体的结构来控制客体穿线的方向和选择性进行了研究。本文综述环糊精、杯芳烃及三蝶烯衍生大环等具有三维不对称结构的大环主体与线性不对称客体之间的方向选择性络合作用以及方向性组装体的构建,并立足于该领域的发展现状,对其前景和应用进行了展望。
In host-guest chemistry, taking precise control over the isomerism in the complexation process can not only simplify and regulate the structures of the final assemblies including mechanical interlocked molecules, but also exert great influence on their performance in carrying out tasks as molecular machines. When a linearly nonsymmetrical guest threads into the cavity of a three-dimensionally nonsymmetrical host, orientational isomers will be formed in theory resulting from the nondegenerate threading directions of the guest. This type of isomerism has been attracting the interest of researchers, and much progress has been made in how to control the threading direction of the guest by rationally designing the structures of both the host and the guest. In this review, the characterization methods of the relative host-guest orientation, the mechanism of the threading process and the construction of assemblies based on the complexation between three-dimensionally nonsymmetrical hosts, including cyclodextrins, calixarenes and triptycene-derived macrocycles, and linearly nonsymmetrical guests are summarized. The prospect and future application are also discussed.
Contents
1 Introduction
2 The general strategies of determining the threading direction and its selectivity of the guest molecule
2.1 The strategies of determining the relative orientation of host and guest
2.2 The strategies of determining the relative amount of orientational isomers
3 Directional threading of guests and construction of assemblies based on cyclodextrins
3.1 Thermodynamically controlled directional threading
3.2 Kinetically controlled directional threading
4 Directional threading of guests and construction of assemblies based on calixarenes
4.1 Directional threading based on urea-derived calix[6]arenes
4.2 Directional threading based on classical calix[6]arenes
5 Directional threading and construction of assemblies based on triptycene-derived macrocyclic hosts
6 Conclusion and outlook

中图分类号: 

()
[1] Amabilino D B, Stoddart J F. Chem. Rev., 1995, 95(8):2725.
[2] Stoddart J F. Angew. Chem. Int. Ed., 2014, 53(42):11102.
[3] Beves J E, Blight B A, Campbell C J, Leigh D A, McBurney R T. Angew. Chem. Int. Ed., 2011, 50(40):9260.
[4] Forgan R S, Sauvage J P, Stoddart J F. Chem. Rev., 2011, 111(9):5434.
[5] Beves J E, Danon J J, Leigh D A, Lemonnier J F, Vitorica-Yrezabal I J. Angew. Chem. Int. Ed., 2015, 54(26):7555.
[6] Balzani V, Venturi M, Credi A. Molecular devices and machines:a journey into the nanoworld. John Wiley & Sons, 2006.
[7] Balzani V, Credi A, Venturi M. Chem. Eur. J., 2002, 8(24):5524.
[8] Stoddart J F. Angew. Chem. Int. Ed., 2017, 56(37):11094.
[9] Barrell M J, Campana A G, Von Delius M, Geertsema E M, Leigh D A. Angew. Chem. Int. Ed., 2011, 50(1):285.
[10] Lewandowski B, De Bo G, Ward J W, Papmeyer M, Kuschel S, Aldegunde M, Gramlich P M E, Heckmann D, Goldup S M, D'Souza D M, Fernandes A E, Leigh D A. Science, 2013, 339(6116):189.
[11] Evans N H, Beer P D. Chem. Soc. Rev., 2014, 43(13):4658.
[12] Crowley J D, Goldup S M, Lee A L, Leigh D A, McBurney R T. Chem. Soc. Rev., 2009, 38(6):1530.
[13] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35(4):361.
[14] Ma X, Tian H. Chem. Soc. Rev., 2010, 39(1):70.
[15] Isnin R, Kaifer A E. J. Am. Chem. Soc., 1991, 113(21):8188.
[16] Oshikiri T, Takashima Y, Yamaguchi H, Harada A. Chem. Eur. J., 2007, 13(25):7091.
[17] Talotta C, Gaeta C, Qi Z H, Schalley C A, Neri P. Angew. Chem. Int. Ed., 2013, 52(29):7437.
[18] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39(10):681.
[19] Chen Y, Liu Y. Chinese J. Org. Chem., 2012, 32(5):805.
[20] Chen Y, Liu Y. Chem. Soc. Rev., 2010, 39(2):495.
[21] Jacques V, Böhmer V. Calixarenes:A Versatile Class of Macrocyclic Compounds. Springer Science & Business Media, 2012.
[22] Neri P, Sessler J L, Wang M X. Calixarenes and Beyond. Springer, 2016.
[23] Craig M R, Hutchings M G, Claridge T D W, Anderson H L. Angew. Chem. Int. Ed., 2001, 40(9):1071.
[24] Wang H X, Meng Z, Xiang J F, Xia Y X, Sun Y, Hu S Z, Chen H, Yao J, Chen C F. Chem. Sci., 2016, 7(1):469.
[25] Wang H X, Hu S Z, Shi Q, Chen C F. Org. Biomol. Chem., 2016, 14(44):10481.
[26] Casati C, Franchi P, Pievo R, Mezzina E, Lucarini M. J. Am. Chem. Soc., 2012, 134(46):19108.
[27] Xue M, Su Y S, Chen C F. Chem. Eur. J., 2010, 16(28):8537.
[28] Arduini A, Bussolati R, Credi A, Faimani G, Garaudée S, Pochini A, Secchi A, Semeraro M, Silvi S, Venturi M. Chem. Eur. J., 2009, 15(13):3230.
[29] Gaeta C, Troisi F, Neri P. Org. Lett., 2010, 12(9):2092.
[30] Hu X Y, Xiao T X, Lin C, Huang F H, Wang L Y. Acc. Chem. Res., 2014, 47(7):2041.
[31] Braga S S, Gonçalves I S, Herdtweck E, Teixeira-Dias J J C. New J. Chem., 2003, 27(3):597.
[32] Park J W, Song H J. Org. Lett., 2004, 6(26):4869.
[33] Wang Q C, Ma X, Qu D H, Tian H. Chem. Eur. J., 2006, 12(4):1088.
[34] Tomatsu I, Hashidzume A, Harada A. Angew. Chem. Int. Ed., 2006, 45(28):4605.
[35] Oshikiri T, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2005, 127(35):12186.
[36] Oshikiri T, Yamaguchi H, Takashima Y, Harada A. Chem. Commun., 2009, (37):5515.
[37] Ikeda A, Shinkai S. Chem. Rev., 1997, 97(5):1713.
[38] Rodler F, Schade B, Jager C M, Backes S, Hampel F, Böttcher C, Clark T, Hirsch A. J. Am. Chem. Soc., 2015, 137(9):3308.
[39] Rathore R, Lindeman S V, Rao K S S P, Sun D, Kochi J K. Angew. Chem. Int. Ed., 2000, 39(12):2123.
[40] Duynhoven J P, Janssen R G, Verboom W, Franken S M, Casnati A, Pochini A, Ungaro R, Mendoza J, Nieto P M. J. Am. Chem. Soc., 1994, 116(13):5814.
[41] Arora S, Sharma S, Mithu V S, Hee-Lee C, Singh K. Chem. Commun., 2015, 51(20):4227.
[42] Kanamathareddy S, Gutsche C D. J. Org. Chem., 1995, 60(19):6070.
[43] Arduini A, Fabbi M, Mantovani M, Mirone L, Pochini A, Secchi A, Ungaro R. J. Org. Chem., 1995, 60(5):1454.
[44] De Rosa M, Soriente A, Concilio G, Talotta C, Gaeta C, Neri P. J. Org. Chem., 2015, 80(14):7295.
[45] Arduini A, Ferdani R, Pochini A, Secchi A, Ugozzoli F. Angew. Chem. Int. Ed., 2000, 39(19):3453.
[46] Arduini A, Calzavacca F, Pochini A, Secchi A. Chem. Eur. J., 2003, 9(3):793.
[47] Arduini A, Ciesa F, Fragassi M, Pochini A, Secchi A. Angew. Chem. Int. Ed., 2004, 44(2):278.
[48] Arduini A, Bussolati R, Credi A, Monaco S, Secchi A, Silvi S, Venturi M. Chem. Eur. J., 2012, 18(50):16203.
[49] Arduini A, Bussolati R, Credi A, Secchi A, Silvi S, Semeraro M, Venturi M. J. Am. Chem. Soc., 2013, 135(26):9924.
[50] Orlandini G, Ragazzon G, Zanichelli V, Secchi A, Venturi M, Arduini A, Credi A. Chem. Commun., 2017, 53(45):6172.
[51] Zanichelli V, Ragazzon G, Orlandini G, Venturi M, Credi A, Silvi S, Arduini A, Secchi A. Org. Biomol. Chem., 2017, 15(32):6753.
[52] Talotta C, Gaeta C, Pierro T, Neri P. Org. Lett., 2011, 13(8):2098.
[53] Talotta C, Gaeta C, Neri P. Org. Lett., 2012, 14(12):3104.
[54] Gaeta C, Talotta C, Mirra S, Margarucci L, Casapullo A, Neri P. Org. Lett., 2013, 15(1):116.
[55] Ciao R, Talotta C, Gaeta C, Margarucci L, Casapullo A, Neri P. Org. Lett., 2013, 15(22):5694.
[56] Gaeta C, Talotta C, Neri P. Chem. Commun., 2014, 50(69):9917.
[57] Hart H, Shamouilian S, Takehira Y. J. Org. Chem., 1981, 46(22):4427.
[58] Bartlett P D, Ryan M J, Cohen S G. J. Am. Chem. Soc., 1942, 64:2649.
[59] Zong Q S, Chen C F. Org. Lett., 2006, 8(2):211.
[60] Han T, Zong Q S, Chen C F. J. Org. Chem., 2007, 72(8):3108.
[61] Tian X H, Hao X, Liang T L, Chen C F. Chem. Commun., 2009, (44):6771.
[62] Guo J B, Han Y, Cao J, Chen C F. Org. Lett., 2011, 13(20):5688.
[63] Han Y, Cao J, Li P F, Zong Q S, Zhao J M, Guo J B, Xiang J F, Chen C F. J. Org. Chem., 2013, 78(7):3235.
[64] Meng Z, Han Y, Wang L N, Xiang J F, He S G, Chen C F. J. Am. Chem. Soc., 2015, 137(30):9739.
[65] Zhang G W, Li P F, Meng Z, Wang H X, Han Y, Chen C F. Angew. Chem. Int. Ed., 2016, 55(17):5304.
[66] Zhang C, Chen C F. J. Org. Chem., 2007, 72(10):3880.
[67] Hu S Z, Chen C F. Chem. Commun., 2010, 46(23):4199.
[68] Xue M, Chen C F. Org. Lett., 2009, 11(22):5294.
[69] Xue M, Chen C F. Chem. Commun., 2008, (46):6128.
[70] Li P F, Chen C F. Chem. Commun., 2011, 47(44):12170.
[71] Xue M, Chen C F. Chem. Commun., 2008, (46):6128.
[72] Hu S Z, Chen C F. Chem. Eur. J., 2011, 17(19):5424.
[73] Pierro T, Gaeta C, Talotta C, Casapullo A, Neri P. Org. Lett., 2011, 13(10):2650.
[74] Nakamura T, Yamaguchi G, Nabeshima T. Angew. Chem. Int. Ed., 2016, 55(33):9606.
[1] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[2] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[3] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[4] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[5] 韩勰, 胡芳, 葛豪杰, 刘盛华, 尹军. 模板导向的亚胺型夹套法在构筑N-杂冠醚类机械互锁分子中的应用[J]. 化学进展, 2015, 27(6): 675-686.
[6] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.
[7] 王光霞, 车延科, 江华. 旋转型单分子机器[J]. 化学进展, 2014, 26(06): 909-918.
[8] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.