English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1461-1485 DOI: 10.7536/PC230306 前一篇   后一篇

• 综述 •

基于二苯甲酮框架的多功能有机发光材料

汤炜1, 邴研1, 刘旭东1, 姜鸿基1,2,3,*()   

  1. 1 有机电子与信息显示国家重点实验室(南京邮电大学) 南京 210023
    2 聚合物分子工程国家重点实验室(复旦大学) 上海 200438
    3 发光材料与器件国家重点实验室(华南理工大学)广州 510641
  • 收稿日期:2023-03-13 修回日期:2023-05-12 出版日期:2023-10-24 发布日期:2023-05-18
  • 作者简介:
    姜鸿基 男,复旦大学高分子化学与物理专业博士,美国宾西法尼亚大学访问学者,南京邮电大学材料科学与工程学院教授。主要研究方向为宽能隙有机电致发光材料的合成、表征和器件应用;活性自由基聚合动力学及其在合成不同拓扑结构高分子中的应用;多重环境响应性有机发光分子的合成、自组装和应用等。以第一或通讯作者身份在Small, Organic Letters, Polymer Chemistry, Macromolecular Rapid Communications,Organic Electronics, Polymer和New Journal of Chemistry等SCI刊物上发表研究论文四十余篇,被SCI文章他引730余次,单篇最高他引次数超过250次,获江苏省科技进步二等奖等奖项多次。
  • 基金资助:
    国家自然科学基金面上项目(21574068); 国家科技部重大基础研究计划(2012CB933301); 江苏高校优势学科建设工程(PAPD); 江苏高校优势学科建设工程(YX030003); 有机电子与信息显示国家重点实验室资助项目(GZR2023010056)

Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks

Wei Tang1, Yan Bing1, Xudong Liu1, Hongji Jiang1,2,3,*()   

  1. 1 State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
    2 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
    3 State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), Guangzhou 510641, China
  • Received:2023-03-13 Revised:2023-05-12 Online:2023-10-24 Published:2023-05-18
  • Contact: *e-mail: iamhjjiang@njupt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21574068); Major Research Program from the State Ministry of Science and Technology,(2012CB933301); Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD); Priority Academic Program Development of Jiangsu Higher Education Institutions(YX030003); Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunication(GZR2023010056)

有机发光材料的光电性能与分子的化学结构、构象变化的灵活性以及分子间相互作用密切相关。从结构上看,二苯甲酮的羰基和苯环具有很高的可化学修饰性,本文从材料合成角度首先综述了近年来基于二苯甲酮框架的多功能有机发光材料的构建策略,主要包括多取代二苯甲酮、用杂原子作为桥连基团以及以C=C偶联和苯环为中心直接偶联等三种策略。已经基于此开发了多种多功能有机发光材料,主要包括荧光材料、贵金属磷光配合物的主体、热激活延迟荧光材料、聚集诱导发光材料和纯有机室温磷光材料等。最后,还展望了基于二苯甲酮框架的多功能有机发光材料未来的研究重点和发展前景。

The optoelectronic properties of organic luminescent materials are strongly correlated with the molecular structure, the flexibility of conformational change and the intermolecular interaction. From the perspective of structure, the carbonyl group and benzene ring of benzophenone have high chemical modifiability. In this paper, the chemical synthesis methods to produce multifunctional organic luminescent materials based on benzophenone framework in recent years are systematically reviewed, including three basic strategies: multiple substitution of benzophenone, using heteroatom as bridging group, vinyl coupling and direct coupling of benzene ring as the center. A variety of multifunctional organic luminescent materials based on this framework have been developed, including fluorescence materials, hosts of precious metal phosphorescence complex, thermally activated delayed fluorescence materials, aggregation-induced emission materials and pure organic room temperature phosphorescence materials. Finally, the development prospect of multi-functional organic luminescent materials based on benzophenone framework is prospected.

Contents

1 Introduction

2 Fluorescence materials based on benzophenone framework

3 Hosts based on benzophenone framework for precious metal phosphorescence complex

4 Thermally activated delayed fluorescence materials based on benzophenone framework

5 Aggregation-induced emission materials based on benzophenone framework

6 Pure organic room temperature phosphorescence materials based on benzophenone framework

7 Conclusions and outlook

()
图1 (a)有机发光材料的发光机理;(b)室温和77 K条件下,二苯甲酮四氢呋喃溶液的光致发光光谱以及室温结晶的光致发光光谱[5]
Fig.1 (a) The luminescence mechanism of organic luminescent materials. (b) Photoluminescence spectra of benzophenone in tetrahydrofuran solution at room temperature and 77 K, and photoluminescence spectrum of crystalline state at room temperature[5]
图2 二苯甲酮及其衍生物分子骨架的化学合成策略
Fig.2 Chemical modification strategies for the molecular skeletons of benzophenone and their derivatives
图3 二苯甲酮和多取代二苯甲酮的合成方法
Fig.3 Synthesis of benzophenone and polysubstituted benzophenone
表1 二苯甲酮的光物理和热稳定性参数[5,7??~10]
Table 1 Optical physics and thermal stability parameters of benzophenone[5,7??~10]
图4 杂原子桥连二苯甲酮的合成方法
Fig.4 Synthesis of heteroatom-bridged benzophenone
图5 以C=C偶联和苯环为中心直接偶联的二苯甲酮衍生物的合成方法
Fig.5 Synthesis of benzophenone derivatives with vinyl coupling and direct coupling of phenyl ring
图6 (a)27~30的化学结构;(b)31和32的化学结构及其发光特征[38,52,53]
Fig.6 (a) Chemical structures of 27~30. (b) Chemical structures and luminescence characteristics of 31 and 32[38,52,53]
图7 (a)33的化学结构;(b)不同样品电压下33的瞬态光电流(插入显示线性图中的一个瞬态曲线,插图上的箭头表示孔的传输时间);(c)空穴传输材料33在非晶层中空穴漂移迁移率与外加电场的关系[54]
Fig.7 (a) Chemical structure of 33. (b) Transient photocurrents in the layers of 33 at different sample voltages. Inserts show the one transient curve in linear plot. Arrows on insets indicate a transit time of holes. (c) The dependences of hole-drift mobility on the applied electric field in the amorphous layers of 33[54]
图8 (a)34的化学结构以及OLED发光图;(b)35和36的化学结构;(c)36在紫外光(365nm)激发下不同极性溶液的荧光颜色图片[27,55,58,59]
Fig.8 (a) Chemical structure of 34 and OLED luminescent picture. (b) Chemical structures of 35 and 36. (c) Images for the fluorescent colors of 36 in corresponding solution under ultraviolet light (365nm)[27,55,58,59]
图9 (a)37~39的化学结构;(b)37的电子和空穴迁移率与半波电位E1/2的关系曲线;(c)38和39在365nm紫外灯下的发光图片[24,62,63]
Fig.9 (a) Chemical structures of 37~39. (b) The relationship between electron, hole mobility of 37 and half-wave potential E1/2. (c) Photograph of the light emitted by 38 and 39 under ultraviolet light at 365nm[24,62,63]
图10 (a)40~43的化学结构;(b)42和43的CIE坐标图[68,69]
Fig.10 (a) Chemical structures of 40~43. (b) CIE coordinates of 42 and 43[68,69]
图11 26的化学结构[37]
Fig.11 Chemical structure of 26[37]
图12 (a)44和45的化学结构;(b)基于44(device 1)和45(device 2)器件的EQE-亮度关系曲线[41]
Fig.12 (a) Chemical structures of 44 and 45. (b) EQE-luminance relationship curves of 44-based device 1 and 45-based device 2[41]
图13 (a)46的化学结构;(b)基于46的蓝色、绿色和红色磷光OLED发光图[21]
Fig.13 (a) Chemical structure of 46. (b) Blue, green and red phosphorescent OLED luminescent image based on 46[21]
图14 (a)47的化学结构;(b)47在77 K的甲苯中的荧光和磷光发射光谱[81]
Fig.14 (a) Chemical structure of 47. (b) Fluorescence and phosphorescence emission spectra of 47 in toluene at 77 K[81]
图15 (a)48的化学结构;(b,c)OLED器件A和B的电流密度和电压特性曲线;(d)EQE与电流密度曲线图[83]
Fig.15 (a) Chemical structure of 48. (b,c) Current density and voltage characteristic curves of OLED devices A and B. (d) EQE and current density curves[83]
图16 (a)中间体4-溴-9,9'-螺芴的合成策略;(b)49~51的化学结构[84,88,90]
Fig.16 (a) Synthesis strategy of intermediate 4-bromo-9,9'-spiro-difluorene. (b) Chemical structures of 49~51[84,88,90]
图17 (a)52和53的化学结构;(b)52和53激子跃迁路线,图下部为各材料光致发光过程中瞬时荧光和延迟荧光的占比[104]
Fig.17 (a) Chemical structures of 52 and 53. (b) Exciton transition routes of 52 and 53. The ratio of transient fluorescence and delayed fluorescence in the photoluminescence process of each material is shown at the bottom of the graph[104]
图18 (a)54和55的化学结构;(b)54和55稀溶液的紫外可见(实心点)和光致发光(空心点)光谱[111]
Fig.18 (a) Chemical structures of 54 and 55. (b) UV-vis (solid point) and photoluminescence spectra (hollow point) of 54 and 55 in dilute solution[111]
图19 (a)56~58的化学结构;(b)基于56和57制备的掺杂器件结构及其EQE与亮度关系图[39,116]
Fig.19 (a) Chemical structures of 56~58. (b) Doped device structures based on 56 and 57 and their EQE-luminance relationships[39,116]
图20 (a)59的化学结构;(b)Device 1 和2的EQE与亮度关系图[120,121]
Fig.20 (a) Chemical structure of 59. (b) EQE and luminance diagrams of devices 1 and 2[120,121]
图21 60~62的化学结构[35,36,122]
Fig.21 Chemical structures of 60~62[35,36,122]
图22 63~67的化学结构[128]
Fig.22 Chemical structures of 63~67[128]
图23 (a)68和69的化学结构;(b)EQE、功率效率和电流效率与OLED的亮度特性;(c)薄膜的荧光光谱、不同工作电压下的电致发光谱和掺杂OLED的照片[132]
Fig.23 (a) Chemical structures of 68 and 69. (b) EQE, power efficiency and current efficiency versus luminance characteristics of the OLED. (c) PL spectra, EL spectra at various operating voltages and photographs of doped OLED[132]
图24 70~73的化学结构[136]
Fig.24 Chemical structures of 70~73[136]
图25 (a)74~76的化学结构;(b)PLQY与掺杂浓度关系;(c)RISC速率常数、T1能级非辐射跃迁速率常数与掺杂浓度之间的关系[138]
Fig.25 (a) Chemical structures of 74~76. (b) The doping concentration dependence on the PLQY. (c) The doping concentration dependence on RISC rate constant (kRISC) and triplet non-radiative rate constant ( k n r T)[138]
图26 (a)77和78的化学结构;(b,c)77和78在不同体积比的四氢呋喃和水混合溶剂中的光致发光光谱[124,151]
Fig.26 (a) Chemical structures of 77 and 78. PL spectra of 77 (b) and 78 (c) in the mixtures of tetrahydrofuran and water at different volume ratios[124,151]
图27 (a)79和80的化学结构;(b)79在不同体积比四氢呋喃和水混合溶剂中的光致发光光谱;(c)365nm紫外线照射下80的晶体[148,153]
Fig.27 (a) Chemical structures of 79 and 80. (b) PL spectra of 79 in tetrahydrofuran and water mixtures with different water fractions. (c) Crystal of 80 under UV light at 365nm[148,153]
图28 (a)81的化学结构;(b)81在不同庚烷组分的CHCl3和庚烷混合物(fw)中的光致发光光谱;(c)相对强度(I/I0)随不同组分氯仿和庚烷混合物的变化。插图显示了在365nm光照下,CHCl3(fw=0,左)和CHCl3和庚烷混合物(fw=90%,右)中的81[154]
Fig.28 (a) Chemical structure of 81. (b) Photoluminescence spectra of 81 in CHCl3 and heptane mixtures with different heptane components (fw). (c) The relative strength (I/I0) changes with different components CHCl3 and heptane mixtures (5×10-6 M). The inset shows 81 in CHCl3 (fw=0, left) and CHCl3 and heptane mixtures (fw=90%, right) at 365nm illumination[154]
图29 (a)82的化学结构;(b)不同体积比DMSO和H2O混合溶剂中82溶液(6 μmol/L)的发光颜色(λex=360nm)[155]
Fig.29 (a) Chemical structure of 82.; (b) Emission color of 82 solution (6 μmol/L) with different water contents in DMSO and H2O (λex=360nm )[155]
图30 (a)83~87的化学结构;(b)83~87在日光(上)和室温365nm紫外灯照明下(下)晶体照片以及87的氮气脱氧环己烷溶液(10-4 mol/L)在365nm紫外灯照射下的未发光(300 K,上)和磷光(77 K,下)照片[5,170,173]
Fig.30 (a) Chemical structures of 83~87. (b) Crystal photographs of 83~87 under sunlight (top) and room temperature 365nm UV light (bottom) and non-luminous (300 K, top) and phosphorescent (77 K, bottom) photographs of 87 nitrogen degassed cyclohexane solutions (10-4 mol/L) under 365nm UV lamp irradiation[5,170,173]
图31 88和89的化学结构[174,175]
Fig.31 Chemical structures of 88 and 89[174,175]
图32 (a)90~97的化学结构;(b)94~97的发光照片及相应的RTP磷光量子产率[184,186]
Fig.32 (a) Chemical structures of 90~97. (b) Luminescent photographs of 94~97 and corresponding RTP phosphorescent quantum yields[184,186]
图33 (a)98和99的化学结构;(b)98和99在氯仿和氩气脱氧氯仿溶液中被365nm紫外光照射下的RTP照片(2.0×10-5 mol/L);(c)98和99在日光下的薄膜图片(左)和在312nm紫外灯下(右)的薄膜RTP照片;(d)98在312nm紫外光照射前后的RTP余辉[191]
Fig.33 (a) Chemical structures of 98 and 99. (b) RTP photographs of 98 and 99 exposed to 365nm UV light in trichloromethane and argon degassing trichloromethane solutions (2.0×10-5 mol/L). (c) Thin-film photographs of 98 and 99 in daylight (left) and thin-film RTP photographs in 312nm UV light (right). (d) RTP afterglow of 98 before and after 312nm UV irradiation[191]
[1]
Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51(12): 913.

doi: 10.1063/1.98799     URL    
[2]
D’Andrade B W, Forrest S R. Adv. Mater., 2004, 16(18): 1585.

doi: 10.1002/adma.v16:18     URL    
[3]
Gopalan R, Sugumar R W. Indian J. Chem., 1978, 16 (3): 198.
[4]
Stack D E, Dawson B T, Rieke R D. J. Am. Chem. Soc., 1991, 113(12): 4672.

doi: 10.1021/ja00012a041     URL    
[5]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q A, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y     URL    
[6]
Laporte J L, Nouchi G, Rousset Y. J. Chem. Phys., 1972, 57(4): 1767.

doi: 10.1063/1.1678468     URL    
[7]
Shizu K, Kaji H. J. Phys. Chem. A, 2021, 125(40): 9000.

doi: 10.1021/acs.jpca.1c06165     URL    
[8]
Ravi S, Peters S, Varathan E, Ravi M, Arockia Selvi J. Colloids Surf. A, 2023, 661: 130919.

doi: 10.1016/j.colsurfa.2023.130919     URL    
[9]
Roppolo I, Chiappone A, Bejtka K, Celasco E, Chiodoni A, Giorgis F, Sangermano M, Porro S. Carbon, 2014, 77: 226.

doi: 10.1016/j.carbon.2014.05.025     URL    
[10]
Davydova N A, Mel’nik V I, Nelipovitch K, Baran J, Kukielski J I. Phys. Rev. B, 2002, 65(9): 094201.

doi: 10.1103/PhysRevB.65.094201     URL    
[11]
Zhao W L, Carreira E M. Org. Lett., 2006, 8(1): 99.

doi: 10.1021/ol052587y     URL    
[12]
Xie N, Liu Y, Hu R R, Leung N L C, Arseneault M, Tang B Z. ISR J. Chem., 2014, 54(7): 958.

doi: 10.1002/ijch.v54.7     URL    
[13]
Wang S Z, Xie K, Tan Z, An X Y, Zhou X J, Guo C C, Peng Z H. Chem. Commun., 2009(42): 6469.
[14]
Wu H, Zhang Z G, Liu Q F, Liu T X, Ma N N, Zhang G S. Org. Lett., 2018, 20(10): 2897.

doi: 10.1021/acs.orglett.8b00957     URL    
[15]
Zhang Z G, Gao Y A, Liu Y A, Li J J, Xie H X, Li H, Wang W. Org. Lett., 2015, 17(21): 5492.

doi: 10.1021/acs.orglett.5b02877     URL    
[16]
Liang E X, Su F, Liang Y, Wang G X, Xu W Y, Li S, Yang C X, Tang J X, Zhou N B. Chem. Commun., 2020, 56(96): 15169.

doi: 10.1039/D0CC06923J     URL    
[17]
Eisch J J, Fregene P O. Eur. J. Org. Chem., 2008, 2008(26): 4482.

doi: 10.1002/ejoc.v2008:26     URL    
[18]
Paquette L A, Chamot E, Browne A R. J. Am. Chem. Soc., 1980, 102(2): 637.

doi: 10.1021/ja00522a033     URL    
[19]
Wei Y, Samori S, Tojo S, Fujitsuka M, Lin J S, Chen C T, Majima T. J. Am. Chem. Soc., 2009, 131(19): 6698.

doi: 10.1021/ja8090005     pmid: 19385627
[20]
Li H, Zhu R Y, Shi W J, He K H, Shi Z J. Org. Lett., 2012, 14(18): 4850.

doi: 10.1021/ol302181z     URL    
[21]
Ma W X, Bin Z Y, Yang G, Liu J J, You J S. Angew. Chem. Int. Ed., 2022, 61(11): e202116681.

doi: 10.1002/anie.v61.11     URL    
[22]
Henderson L J Jr, Fronczek F R, Cherry W R. J. Am. Chem. Soc., 1984, 106(20): 5876.

doi: 10.1021/ja00332a020     URL    
[23]
Singh A K, Jang S, Kim J Y, Sharma S, Basavaraju K C, Kim M G, Kim K R, Lee J S, Lee H H, Kim D P. ACS Catal., 2015, 5(11): 6964.

doi: 10.1021/acscatal.5b01319     URL    
[24]
Poriel C, Rault-Berthelot J. Acc. Chem. Res., 2018, 51(8): 1818.

doi: 10.1021/acs.accounts.8b00210     URL    
[25]
Thirion D, Poriel C, Barrière F, MÉtivier R, Jeannin O, Rault-Berthelot J. Org. Lett., 2009, 11(21): 4794.

doi: 10.1021/ol901750x     pmid: 19795887
[26]
Fix A G, Chase D T, Haley M M. Top. Curr. Chem., 2014, 349: 159.
[27]
Li Y Y, Lu H Y, Li M, Li X J, Chen C F. J. Org. Chem., 2014, 79(5): 2139.

doi: 10.1021/jo4028616     URL    
[28]
Kaiser R P, Nečas D, Cadart T, Gyepes R, Císařová I, Mosinger J, Pospíšil L, Kotora M. Angew. Chem. Int. Ed., 2019, 58(48): 17169.

doi: 10.1002/anie.v58.48     URL    
[29]
Sharma R, Thomas M B, Misra R, D'Souza F. Angew. Chem. Int. Ed., 2019, 58(13): 4350.

doi: 10.1002/anie.201814388     pmid: 30710495
[30]
Kamino B A, Mills B, Reali C, Gretton M J, Brook M A, Bender T P. J. Org. Chem., 2012, 77(4): 1663.

doi: 10.1021/jo2020906     pmid: 22220839
[31]
Liu F, Xie L H, Tang C, Liang J, Chen Q Q, Peng B, Wei W, Cao Y, Huang W. Org. Lett., 2009, 11(17): 3850.

doi: 10.1021/ol900978x     URL    
[32]
Maciejczyk M, Ivaturi A, Robertson N. J. Mater. Chem. A, 2016, 4(13): 4855.

doi: 10.1039/C6TA00110F     URL    
[33]
Bhanuchandra M, Yorimitsu H, Osuka A. Org. Lett., 2016, 18(3): 384.

doi: 10.1021/acs.orglett.5b03384     pmid: 26744785
[34]
Liu H, Liu Z W, Li G G, Huang H N, Zhou C J, Wang Z M, Yang C L. Angew. Chem. Int. Ed., 2021, 60(22): 12376.

doi: 10.1002/anie.v60.22     URL    
[35]
Fan X C, Wang K, Zheng C J, Dai G L, Shi Y Z, Li Y Q, Yu J A, Ou X M, Zhang X H. J. Mater. Chem. C, 2019, 7(29): 8923.

doi: 10.1039/C9TC02032B     URL    
[36]
Wu L, Wang K, Wang C, Fan X C, Shi Y Z, Zhang X A, Zhang S L, Ye J, Zheng C J, Li Y Q, Yu J A, Ou X M, Zhang X H. Chem. Sci., 2021, 12(4): 1495.

doi: 10.1039/D0SC05631F     URL    
[37]
Jiang H J, Sun J A. New J. Chem., 2013, 37(10): 3161.

doi: 10.1039/c3nj00635b     URL    
[38]
Shen Y, Tang X H, Xu Y W, Liu H C, Zhang S T, Yang B, Ma Y G. Chin. Chem. Lett., 2019, 30(11): 1947.

doi: 10.1016/j.cclet.2019.07.059     URL    
[39]
Chen J K, Zeng J J, Zhu X Y, Guo J J, Zhao Z J, Tang B Z. CCS Chem., 2021, 3(12): 230.

doi: 10.31635/ccschem.020.202000504     URL    
[40]
Wang L J, Nan G J, Yang X D, Peng Q A, Li Q K, Shuai Z G. Chem. Soc. Rev., 2010, 39(2): 423.

doi: 10.1039/B816406C     URL    
[41]
Neogi I, Darshan V, Linet A, Anjalikrishna P K, Sebastian A, Mohanty G, Morimoto A, Suresh C H, Yagi S, Posner Y D, Grynszpan F, Unni N. Synth. Met., 2022, 291: 117185.

doi: 10.1016/j.synthmet.2022.117185     URL    
[42]
Wu K C, Ku P J, Lin C S, Shih H T, Wu F I, Huang M J, Lin J J, Chen I C, Cheng C H. Adv. Funct. Mater., 2008, 18(1): 67.

doi: 10.1002/adfm.v18:1     URL    
[43]
Cho I, Kim S H, Kim J H, Park S, Park S Y. J. Mater. Chem., 2012, 22(1): 123.

doi: 10.1039/C1JM14482K     URL    
[44]
Schmidbauer S, Hohenleutner A, König B. Adv. Mater., 2013, 25(15): 2114.

doi: 10.1002/adma.v25.15     URL    
[45]
So F, Kondakov D. Adv. Mater., 2010, 22(34): 3762.

doi: 10.1002/adma.v22:34     URL    
[46]
Lin N, Qiao J A, Duan L A, Wang L D, Qiu Y. J. Phys. Chem. C, 2014, 118(14): 7569.

doi: 10.1021/jp412614k     URL    
[47]
Grimsdale A C, Leok Chan K, Martin R E, Jokisz P G, Holmes A B. Chem. Rev., 2009, 109(3): 897.

doi: 10.1021/cr000013v     pmid: 19228015
[48]
Pogantsch A, Wenzl F P, List E J W, Leising G, Grimsdale A C, Müllen K. Adv. Mater., 2002, 14(15): 1061.

doi: 10.1002/1521-4095(20020805)14:15【-逻*辑*与-】lt;1061::AID-ADMA1061【-逻*辑*与-】gt;3.0.CO;2-6     URL    
[49]
Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger A J. Adv. Funct. Mater., 2003, 13(1): 25.

doi: 10.1002/adfm.v13:1     URL    
[50]
Scherf U, List E J W. Adv. Mater., 2002, 14(7): 477.

doi: 10.1002/(ISSN)1521-4095     URL    
[51]
Zojer E, Pogantsch A, Hennebicq E, Beljonne D, BrÉdas J L, Scandiucci de Freitas P, Scherf U, List E J W. J. Chem. Phys., 2002, 117(14): 6794.

doi: 10.1063/1.1507106     URL    
[52]
Zhou X Y, Hui T Q, Han Y Y, Huang X T, Jiang X N, Liu C, Yan J. J. Mol. Struct., 2021, 1234: 130185.

doi: 10.1016/j.molstruc.2021.130185     URL    
[53]
Chen L, Chen K Z, Yao R J, Zeng R P, Lin Y C, Jian R K, Bai W B. Mater. Chem. Phys., 2022, 285: 126083.

doi: 10.1016/j.matchemphys.2022.126083     URL    
[54]
Rakstys K, Saliba M, Gao P, Gratia P, Kamarauskas E, Paek S, Jankauskas V, Nazeeruddin M K. Angew. Chem. Int. Ed., 2016, 55(26): 7464.

doi: 10.1002/anie.v55.26     URL    
[55]
Wei Y, Chen C T. J. Am. Chem. Soc., 2007, 129(24): 7478.

pmid: 17523643
[56]
Chen C T, Wei Y, Lin J S, Moturu M V R K, Chao W S, Tao Y T, Chien C H. J. Am. Chem. Soc., 2006, 128(34): 10992.

pmid: 16925394
[57]
Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17(3): 285.

doi: 10.1002/adma.v17:3     URL    
[58]
Wang J L, Yan J, Tang Z M, Xiao Q, Ma Y G, Pei J A. J. Am. Chem. Soc., 2008, 130(30): 9952.

doi: 10.1021/ja803109r     URL    
[59]
Wang J L, Tang Z M, Xiao Q, Zhou Q F, Ma Y G, Pei J A. Org. Lett., 2008, 10(1): 17.

doi: 10.1021/ol702467u     URL    
[60]
Tang M L, Bao Z N. Chem. Mater., 2011, 23(3): 446.

doi: 10.1021/cm102182x     URL    
[61]
Babudri F, Farinola G M, Naso F, Ragni R. Chem. Commun., 2007(10): 1003.
[62]
Li Z F, Jiao B, Wu Z X, Liu P, Ma L, Lei X L, Wang D D, Zhou G J, Hu H M, Hou X. J. Mater. Chem. C, 2013, 1(11): 2183.

doi: 10.1039/c3tc00466j     URL    
[63]
Thirion D, Poriel C, Barrière F, MÉtivier R, Jeannin O, Rault-Berthelot J. Org. Lett., 2009, 11(21): 4794.

doi: 10.1021/ol901750x     pmid: 19795887
[64]
Xie L H, Liu F, Tang C, Hou X Y, Hua Y R, Fan Q L, Huang W. Org. Lett., 2006, 8(13): 2787.

doi: 10.1021/ol060871z     URL    
[65]
Sun M L, Xu R C, Xie L H, Wei Y, Huang W. Chin. J. Chem., 2015, 33(8): 815.

doi: 10.1002/cjoc.v33.8     URL    
[66]
Cao H T, Wan J, Li B, Zhang H, Xie L H, Sun C, Feng Q Y, Yu W J, Huang W. Dyes Pigm., 2021, 185: 108894.

doi: 10.1016/j.dyepig.2020.108894     URL    
[67]
Liang X Z, Wang K X, Zhang R Q, Li K, Lu X Q, Guo K P, Wang H A, Miao Y Q, Xu H X, Wang Z Q. Dyes Pigm., 2017, 139: 764.

doi: 10.1016/j.dyepig.2017.01.012     URL    
[68]
Li Y Y, Li Y M, Zhao Y L, Yu T Z, Su W M, Wang R D, Ma H L, Qian L. Synth. Met., 2021, 277: 116771.

doi: 10.1016/j.synthmet.2021.116771     URL    
[69]
Li Y C, Wang Z H, Li X L, Xie G Z, Chen D C, Wang Y F, Lo C C, A L E, Peng J B, Cao Y, Su S J. Chem. Mater., 2015, 27(3): 1100.

doi: 10.1021/cm504441v     URL    
[70]
Zou S J, Shen Y, Xie F M, Chen J D, Li Y Q, Tang J X. Mater. Chem. Front., 2020, 4(3): 788.

doi: 10.1039/C9QM00716D     URL    
[71]
Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151.

doi: 10.1038/25954     URL    
[72]
Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R. Nature, 2006, 440(7086): 908.

doi: 10.1038/nature04645    
[73]
Chandra V K, Chandra B P. Org. Electron., 2012, 13(2): 329.

doi: 10.1016/j.orgel.2011.11.003     URL    
[74]
Tao Y T, Yang C L, Qin J G. Chem. Soc. Rev., 2011, 40(5): 2943.

doi: 10.1039/c0cs00160k     URL    
[75]
Jhulki S, Seth S, Ghosh A, Chow T J, Moorthy J N. ACS Appl. Mater. Interfaces, 2016, 8(2): 1527.

doi: 10.1021/acsami.5b11232     URL    
[76]
Zhang Y, Li Z, Li C, Wang Y. Front. Chem., 2019, 7: 302.

doi: 10.3389/fchem.2019.00302     URL    
[77]
Ramachandran K, Vijayakumar P, Raja A, Mohankumar V, Vinitha G, Senthil Pandian M, Ramasamy P. J. Mater. Sci., 2018, 29(10): 8571.
[78]
Matsushima T, Adachi C. J. Appl. Phys., 2008, 103(3): 034501.

doi: 10.1063/1.2836972     URL    
[79]
Klenkler R A, Aziz H, Tran A, Popovic Z D, Xu G. Org. Electron., 2008, 9(3): 285.

doi: 10.1016/j.orgel.2007.11.004     URL    
[80]
Lee J H, Wu C I, Liu S W, Huang C A, Chang Y. Appl. Phys. Lett., 2005, 86(10): 103506.

doi: 10.1063/1.1879093     URL    
[81]
Vezzu D A K, Deaton J C, Shayeghi M, Li Y M, Huo S Q. Org. Lett., 2009, 11(19): 4310.

doi: 10.1021/ol901584g     URL    
[82]
Wu C C, Liu T L, Hung W Y, Lin Y T, Wong K T, Chen R T, Chen Y M, Chien Y Y. J. Am. Chem. Soc., 2003, 125(13): 3710.

doi: 10.1021/ja029630m     URL    
[83]
Wong K T, Chen Y M, Lin Y T, Su H C, Wu C C. Org. Lett., 2005, 7(24): 5361.

doi: 10.1021/ol051977h     URL    
[84]
Jiang Z Q, Yao H Q, Zhang Z Q, Yang C L, Liu Z Y, Tao Y T, Qin J G, Ma D G. Org. Lett., 2009, 11(12): 2607.

doi: 10.1021/ol9008816     URL    
[85]
Jiang W F, Wang H L, Wang A G, Li Z Q. Synth. Commun., 2008, 38(12): 1888.

doi: 10.1080/00397910801997439     URL    
[86]
Sun M L, Yue S Z, Lin J R, Ou C J, Qian Y, Zhang Y, Li Y, Wei Q, Zhao Y, Xie L H, Huang W. Synth. Met., 2014, 195: 321.

doi: 10.1016/j.synthmet.2014.06.022     URL    
[87]
Qian Y, Xie G H, Chen S F, Liu Z D, Ni Y R, Zhou X H, Xie L H, Liang J, Zhao Y Z, Yi M H, Zhao Y, Wei W, Huang W. Org. Electron., 2012, 13(11): 2741.

doi: 10.1016/j.orgel.2012.07.047     URL    
[88]
Zhao J E, Xie G H, Yin C R, Xie L H, Han C M, Chen R F, Xu H, Yi M D, Deng Z P, Chen S F, Zhao Y, Liu S Y, Huang W. Chem. Mater., 2011, 23(24): 5331.

doi: 10.1021/cm201654c     URL    
[89]
Son H S, Lee J Y. Org. Electron., 2011, 12(6): 1025.

doi: 10.1016/j.orgel.2011.03.015     URL    
[90]
Chi L C, Hung W Y, Chiu H C, Wong K T. Chem. Commun., 2009,(26): 3892.
[91]
Moon C K, Suzuki K, Shizu K, Adachi C, Kaji H, Kim J J. Adv. Mater., 2017, 29(17): 1606448.

doi: 10.1002/adma.v29.17     URL    
[92]
Zhan L S, Chen Z X, Gong S L, Xiang Y P, Ni F, Zeng X, Xie G H, Yang C L. Angew. Chem. Int. Ed., 2019, 58(49): 17651.

doi: 10.1002/anie.v58.49     URL    
[93]
Xie F M, Zhou J X, Li Y Q, Tang J X. J. Mater. Chem. C, 2020, 8(28): 9476.

doi: 10.1039/D0TC02252G     URL    
[94]
Pan K C, Li S W, Ho Y Y, Shiu Y J, Tsai W L, Jiao M, Lee W K, Wu C C, Chung C L, Chatterjee T, Li Y S, Wong K T, Hu H C, Chen C C, Lee M T. Adv. Funct. Mater., 2016, 26(42): 7560.

doi: 10.1002/adfm.v26.42     URL    
[95]
Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H. Nat. Photonics, 2018, 12(4): 235.

doi: 10.1038/s41566-018-0112-9    
[96]
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv. Mater., 2016, 28(32): 6976.

doi: 10.1002/adma.v28.32     URL    
[97]
Zhang Y L, Ran Q, Wang Q, Liu Y, Hänisch C, Reineke S, Fan J, Liao L S. Adv. Mater., 2019, 31(42): 1902368.

doi: 10.1002/adma.v31.42     URL    
[98]
Li J, Nakagawa T, MacDonald J, Zhang Q S, Nomura H, Miyazaki H, Adachi C. Adv. Mater., 2013, 25(24): 3319.

doi: 10.1002/adma.v25.24     URL    
[99]
Li C, Liang J, Liang B, Li Z, Cheng Z, Yang G, Wang Y. Adv. Opt. Mater., 2019, 7 (10): 1801667.

doi: 10.1002/adom.v7.10     URL    
[100]
Aizawa N, Tsou C J, Park I S, Yasuda T. Polym. J., 2017, 49(1): 197.

doi: 10.1038/pj.2016.82    
[101]
Chen Z X, Ni F, Wu Z B, Hou Y C, Zhong C, Huang M L, Xie G H, Ma D G, Yang C L. J. Phys. Chem. Lett., 2019, 10(11): 2669.

doi: 10.1021/acs.jpclett.9b00937     URL    
[102]
Zhao H B, Wang Z H, Cai X Y, Liu K K, He Z Z, Liu X, Cao Y, Su S J. Mater. Chem. Front., 2017, 1(10): 2039.

doi: 10.1039/C7QM00195A     URL    
[103]
Wang F F, Cao X D, Mei L, Zhang X W, Hu J, Tao Y T. Chin. J. Chem., 2018, 36(3): 241.

doi: 10.1002/cjoc.v36.3     URL    
[104]
Kreiza G, Banevičius D, Jovaišaite J, Maleckaite K, Gudeika D, Volyniuk D, Gražulevičius J V, Juršenas S, Kazlauskas K. J. Mater. Chem. C, 2019, 7(37): 11522.

doi: 10.1039/C9TC02408E     URL    
[105]
Lee S Y, Yasuda T, Yang Y S, Zhang Q S, Adachi C. Angew. Chem. Int. Ed., 2014, 53(25): 6402.

doi: 10.1002/anie.v53.25     URL    
[106]
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv. Mater., 2016, 28(21): 4019.

doi: 10.1002/adma.v28.21     URL    
[107]
Data P, Pander P, Okazaki M, Takeda Y, Minakata S, Monkman A P. Angew. Chem., 2016, 128(19): 5833.

doi: 10.1002/ange.v128.19     URL    
[108]
Li C L, Duan R H, Liang B Y, Han G C, Wang S P, Ye K Q, Liu Y, Yi Y P, Wang Y. Angew. Chem. Int. Ed., 2017, 56(38): 11525.

doi: 10.1002/anie.v56.38     URL    
[109]
Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125(42): 12971.

pmid: 14558846
[110]
Cai X Y, Li X L, Xie G Z, He Z Z, Gao K, Liu K K, Chen D C, Cao Y, Su S J. Chem. Sci., 2016, 7(7): 4264.

doi: 10.1039/C6SC00542J     URL    
[111]
Gan L, Li X L, Cai X Y, Liu K K, Li W, Su S J. Beilstein J. Org. Chem., 2018, 14: 672.

doi: 10.3762/bjoc.14.55     URL    
[112]
Lee J, Aizawa N, Numata M, Adachi C, Yasuda T. Adv. Mater., 2017, 29(4): 1604856.

doi: 10.1002/adma.v29.4     URL    
[113]
Shaikh A M, Sharma B K, Kamble R M. J. Chem. Sci., 2015, 127(9): 1571.

doi: 10.1007/s12039-015-0904-0     URL    
[114]
Wang C G, Zhang Z L, Wang Y E. J. Mater. Chem. C, 2016, 4(42): 9918.

doi: 10.1039/C6TC03621J     URL    
[115]
Pander P, Swist A, Motyka R, Soloducho J, Dias F B, Data P. J. Mater. Chem. C, 2018, 6(20): 5434.

doi: 10.1039/C8TC00175H     URL    
[116]
Siddiqui Q T, Awasthi A A, Bhui P, Muneer M, Chandrakumar K R S, Bose S, Agarwal N. J. Phys. Chem. C, 2019, 123(2): 1003.

doi: 10.1021/acs.jpcc.8b08357    
[117]
Xue M M, Huang C C, Yuan Y, Cui L S, Li Y X, Wang B, Jiang Z Q, Fung M K, Liao L S. ACS Appl. Mater. Interfaces, 2016, 8(31): 20230.

doi: 10.1021/acsami.6b05064     URL    
[118]
Sicard L, Quinton C, Peltier J D, Tondelier D, Geffroy B, Biapo U, MÉtivier R, Jeannin O, Rault-Berthelot J, Poriel C. Chem. A Eur. J., 2017, 23(32): 7719.

doi: 10.1002/chem.v23.32     URL    
[119]
Nakagawa T, Ku S Y, Wong K T, Adachi C. Chem. Commun., 2012, 48(77): 9580.

doi: 10.1039/c2cc31468a     URL    
[120]
Liang J J, Li Y, Yuan Y, Li S H, Zhu X D, Barlow S, Fung M K, Jiang Z Q, Marder S R, Liao L S. Mater. Chem. Front., 2018, 2(5): 917.

doi: 10.1039/C7QM00605E     URL    
[121]
Chen X K, Tsuchiya Y, Ishikawa Y, Zhong C, Adachi C, BrÉdas J L. Adv. Mater., 2017, 29(46): 1702767.

doi: 10.1002/adma.v29.46     URL    
[122]
Yi R H, Liu G Y, Luo Y T, Wang W Y, Tsai H Y, Lin C H, Shen H L, Chang C H, Lu C W. Chem. A Eur. J., 2021, 27(51): 12998.

doi: 10.1002/chem.v27.51     URL    
[123]
Gan S F, Luo W W, He B R, Chen L, Nie H, Hu R R, Qin A J, Zhao Z J, Tang B Z. J. Mater. Chem. C, 2016, 4(17): 3705.

doi: 10.1039/C5TC03588K     URL    
[124]
Xie Z L, Chen C J, Xu S D, Li J, Zhang Y, Liu S W, Xu J R, Chi Z G. Angew. Chem. Int. Ed., 2015, 54(24): 7181.

doi: 10.1002/anie.v54.24     URL    
[125]
Xu S D, Liu T T, Mu Y X, Wang Y F, Chi Z G, Lo C C, Liu S W, Zhang Y, Lien A L, Xu J R. Angew. Chem. Int. Ed., 2015, 54(3): 874.

doi: 10.1002/anie.v54.3     URL    
[126]
Xue Q, Xie G. Adv. Opt. Mater., 2021, 9 (14): 2002204.

doi: 10.1002/adom.v9.14     URL    
[127]
Wong M Y, Zysman C E. Adv. Mater., 2017, 29 (22): 1605444.

doi: 10.1002/adma.v29.22     URL    
[128]
Song Y J, Tian M X, Yu R Y, He L. ACS Appl. Mater. Interfaces, 2021, 13(50): 60269.

doi: 10.1021/acsami.1c17707     URL    
[129]
Hall D, Suresh S M, dos Santos P L, Duda E, Bagnich S, Pershin A, Rajamalli P, Cordes D B, Slawin A M Z, Beljonne D, Köhler A, Samuel I D W, Olivier Y, Zysman-Colman E. Adv. Optical Mater., 2020, 8(2): 1901627.

doi: 10.1002/adom.v8.2     URL    
[130]
Huang X L, Zou J H, Liu J Z, Jin G, Li J B, Yao S L, Peng J B, Cao Y, Zhu X H. Org. Electron., 2018, 58: 139.

doi: 10.1016/j.orgel.2018.04.012     URL    
[131]
Cho Y J, Taylor S, Aziz H. ACS Appl. Mater. Interfaces, 2017, 9(46): 40564.

doi: 10.1021/acsami.7b15190     URL    
[132]
Jing Y Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2021, 413: 127418.

doi: 10.1016/j.cej.2020.127418     URL    
[133]
Sarala L, Ramesh B Y, Peddaboodi G, Elanthamilan E, Bella A, Sundar M S, Parameswar K I, Princy M J. J. Photoch. Photobio. A, 2018, 365: 232.

doi: 10.1016/j.jphotochem.2018.08.009     URL    
[134]
Jiang T C, Liu Y C, Ren Z J, Yan S K. Polym. Chem., 2020, 11(9): 1555.

doi: 10.1039/D0PY00096E     URL    
[135]
Wei Q, Fei N N, Islam A, Lei T, Hong L, Peng R X, Fan X, Chen L, Gao P Q, Ge Z Y. Adv. Opt. Mater., 2018, 6(20): 1800512.

doi: 10.1002/adom.v6.20     URL    
[136]
Philipps K, Ie Y, van der Zee B, Png R Q, Ho P K H, Chua L L, del Pino Rosendo E, Ramanan C, Wetzelaer G J A H, Blom P W M, Michels J J. Adv. Sci., 2022, 9(19): 2200056.

doi: 10.1002/advs.v9.19     URL    
[137]
Ban X X, Zhou T, Cao Q P, Zhang K Z, Tong Z W, Xu H, Zhu A Y, Jiang W. J. Mater. Chem. C, 2022, 10(40): 15114.

doi: 10.1039/D2TC02641D     URL    
[138]
Li X, Yan L B, Liu S, Wang S M, Rao J C, Zhao L, Tian H K, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2023, 62(19): e202300529.
[139]
Rao J C, Yang L Q, Li X, Zhao L, Wang S M, Tian H K, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2021, 60(17): 9635.

doi: 10.1002/anie.v60.17     URL    
[140]
Gandioso A, Bresolí-Obach R, Nin-Hill A, Bosch M, Palau M, Galindo A, Contreras S, Rovira A, Rovira C, Nonell S, Marchán V. J. Org. Chem., 2018, 83(3): 1185.

doi: 10.1021/acs.joc.7b02660     pmid: 29283264
[141]
Zhang Y B, Xia S A, Fang M X, Mazi W F, Zeng Y B, Johnston T, Pap A, Luck R L, Liu H Y. Chem. Commun., 2018, 54(55): 7625.

doi: 10.1039/C8CC03520B     URL    
[142]
Matsumoto S, Fuchi Y, Usui K, Hirai G, Karasawa S. J. Org. Chem., 2019, 84(11): 6612.

doi: 10.1021/acs.joc.9b00023     pmid: 31094191
[143]
He P B, Xu H, An Z F, Cai Z Y, Cai Z X, Chao H, Chen B, Chen M, Chen Y, Chi Z G, Dai S T, Ding D, Dong Y P, Gao Z Y, Guan W J, He Z K, Hu J J, Hu R, Hu Y X, Huang Q Y, Kang M M, Li D X, Li J S, Li S Z, Li W L, Li Z, Liu X L, Liu H Y, Liu P Y, Lou X D, Lu C, Ma D G, Ou H L, Ouyang J, Peng Q, Qian J, Qin A J, Qu J M, Shi J B, Shuai Z G, Sun L H, Tian R, Tian W J, Tong B, Wang H L, Wang D, Wang H, Wan T, Wang X, Wang Y C, Wu S Z, Xia F, Xie Y J, Xion K, Xu B, Yan D P, Yang H B, Yang Q Z, Yang Z Y, Yuan L Z, Yuan W Z, Zang S Q, Zeng F, Zeng J J, Zeng Z, Zhang G Q, Zhang X Y, Zhang X P, Zhang Y, Zhang Y F, Zhang Z J, Zhao J, Zhao Z, Zhao Z H, Zhao Z J, Tang B Z. Prog. Chem., 2022, 34 (1): 1.
[144]
Leung N L C, Xie N, Yuan W Z, Liu Y, Wu Q Y, Peng Q, Miao Q, Lam J W Y, Tang B Z. Chem. A Eur. J., 2014, 20(47): 15349.

doi: 10.1002/chem.v20.47     URL    
[145]
Hong Y N, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 40(11): 5361.

doi: 10.1039/c1cs15113d     URL    
[146]
Pei Y, Xie J X, Cui D X, Liu S N, Li G F, Zhu D X, Su Z M. Dalton Trans., 2020, 49(37): 13066.

doi: 10.1039/d0dt02526g     pmid: 32926051
[147]
Saccone M, Riebe S, Stelzer J, Wölper C, Daniliuc C G, Voskuhl J, Giese M. CrystEngComm, 2019, 21(19): 3097.

doi: 10.1039/c9ce00444k    
[148]
Miao X R, Cai Z K, Zou H Q, Li J X, Zhang S Y, Ying L, Deng W L. J. Mater. Chem. C, 2022, 10(21): 8390.

doi: 10.1039/D2TC00712F     URL    
[149]
Hong Y N, Lam J W Y, Tang B Z. Chem. Commun., 2009(29): 4332.
[150]
Liu J Z, Lam J W Y, Tang B Z. J. Inorg. Organomet. Polym. Mater., 2009, 19(3): 249.

doi: 10.1007/s10904-009-9282-8     URL    
[151]
Guo H X, Song X Y, Wang X H, Liu Y W, Redshaw C, Feng X. ChemistrySelect, 2022, 7(29): e202202208.
[152]
Zhao Z J, Lam J W Y, Tang B Z. J. Mater. Chem., 2012, 22(45): 23726.

doi: 10.1039/c2jm31949g     URL    
[153]
Huang J, Chen P Y, Yang X, Tang R L, Wang L, Qin J, Li Z. Sci. China Chem., 2013, 56(9): 1213.

doi: 10.1007/s11426-013-4925-6     URL    
[154]
Duan Y L, Ju C G, Yang G, Fron E, Coutino-Gonzalez E, Semin S, Fan C C, Balok R S, Cremers J, Tinnemans P, Feng Y Q, Li Y L, Hofkens J, Rowan A E, Rasing T, Xu J L. Adv. Funct. Mater., 2016, 26(48): 8968.

doi: 10.1002/adfm.v26.48     URL    
[155]
Wang L Y, Xiong W, Tang H, Cao D R. J. Mater. Chem. C, 2019, 7(29): 9102.

doi: 10.1039/C9TC02129A     URL    
[156]
Hoshino S, Suzuki H. Appl. Phys. Lett., 1996, 69(2): 224.

doi: 10.1063/1.117379     URL    
[157]
Xiong Q X, Xu C, Jiao N M, Ma X, Zhang Y Q, Zhang S J. Chin. Chem. Lett., 2019, 30(7): 1387.

doi: 10.1016/j.cclet.2019.04.010     URL    
[158]
Wang D S, Wang X, Xu C, Ma X. Sci. China Chem., 2019, 62(4): 430.

doi: 10.1007/s11426-018-9383-2    
[159]
Xu S, Chen R F, Zheng C, Huang W. Adv. Mater., 2016, 28(45): 9920.

doi: 10.1002/adma.v28.45     URL    
[160]
Hirata S. Adv. Opt. Mater., 2017, 5 (17): 1700116.

doi: 10.1002/adom.v5.17     URL    
[161]
Qu G J, Zhang Y P, Ma X. Chin. Chem. Lett., 2019, 30(10): 1809.

doi: 10.1016/j.cclet.2019.07.042     URL    
[162]
Reineke S, Baldo M A. Sci. Rep., 2014, 4: 3797.

doi: 10.1038/srep03797    
[163]
Liu Y, Zhan G, Liu Z W, Bian Z Q, Huang C H. Chin. Chem. Lett., 2016, 27(8): 1231.

doi: 10.1016/j.cclet.2016.06.029     URL    
[164]
Kalyanasundaram K, Grieser F, Thomas J K. Chem. Phys. Lett., 1977, 51(3): 501.

doi: 10.1016/0009-2614(77)85410-9     URL    
[165]
Alam P, Leung N L C, Liu J K, Cheung T S, Zhang X P, He Z K, Kwok R T K, Lam J W Y, Sung H H Y, Williams I D, Chan C C S, Wong K S, Peng Q, Tang B Z. Adv. Mater., 2020, 32(22): 2001026.

doi: 10.1002/adma.v32.22     URL    
[166]
Cai S Z, Shi H F, Tian D, Ma H L, Cheng Z C, Wu Q, Gu M X, Huang L, An Z F, Peng Q, Huang W. Adv. Funct. Mater., 2018, 28(9): 1870060.

doi: 10.1002/adfm.v28.9     URL    
[167]
Narushima K, Kiyota Y, Mori T, Hirata S, Vacha M. Adv. Mater., 2019, 31(10): 1807268.

doi: 10.1002/adma.v31.10     URL    
[168]
Yang J E, Zhen X, Wang B, Gao X M, Ren Z C, Wang J Q, Xie Y J, Li J R, Peng Q A, Pu K Y, Li Z. Nat. Commun., 2018, 9: 840.

doi: 10.1038/s41467-018-03236-6     pmid: 29483501
[169]
Kearns D R, Case W A. J. Am. Chem. Soc., 1966, 88(22): 5087.

doi: 10.1021/ja00974a008     URL    
[170]
Shimizu M, Shigitani R, Nakatani M, Kuwabara K, Miyake Y, Tajima K, Sakai H, Hasobe T. J. Phys. Chem. C, 2016, 120(21): 11631.

doi: 10.1021/acs.jpcc.6b03276     URL    
[171]
Li J E, Jiang Y B, Cheng J A, Zhang Y L, Su H M, Lam J W Y, Sung H H Y, Wong K S, Kwok H S, Tang B Z. Phys. Chem. Chem. Phys., 2015, 17(2): 1134.

doi: 10.1039/C4CP04052J     URL    
[172]
Gong Y Y, Zhao L F, Peng Q A, Fan D, Yuan W Z, Zhang Y M, Tang B Z. Chem. Sci., 2015, 6(8): 4438.

doi: 10.1039/C5SC00253B     URL    
[173]
Zhao W J, He Z K, Lam J Y, Peng Q A, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang ben zhong. Chem, 2016, 1(4): 592.

doi: 10.1016/j.chempr.2016.08.010     URL    
[174]
Liu Y, Deng C M, Tang L, Qin A J, Hu R R, Sun J Z, Tang B Z. J. Am. Chem. Soc., 2011, 133(4): 660.

doi: 10.1021/ja107086y     pmid: 21171593
[175]
Tian R, Xu S M, Xu Q, Lu C. Sci. Adv., 2020, 6(21): eaaz6107.
[176]
Cai S Z, Ma H L, Shi H F, Wang H, Wang X A, Xiao L X, Ye W P, Huang K W, Cao X D, Gan N, Ma C Q, Gu M X, Song L L, Xu H, Tao Y T, Zhang C F, Yao W, An Z F, Huang W. Nat. Commun., 2019, 10: 4247.

doi: 10.1038/s41467-019-11749-x    
[177]
Hirata S, Totani K, Zhang J X, Yamashita T, Kaji H, Marder S R, Watanabe T, Adachi C. Adv. Funct. Mater., 2013, 23(27): 3386.

doi: 10.1002/adfm.v23.27     URL    
[178]
Liu B, Deng X R, Xie Z X, Cheng Z Y, Yang P P, Lin J. Adv. Mater., 2017, 29(36): 1604878.

doi: 10.1002/adma.v29.36     URL    
[179]
Zhang T T, Wang X, An Z F, Fang Z W, Zhang Y M, Yuan W Z. ChemPhysChem, 2018, 19(18): 2389.

doi: 10.1002/cphc.v19.18     URL    
[180]
Mao Z, Yang Z, Fan Z G, Ubba E, Li W L, Li Y, Zhao J A, Yang Z Y, Aldred M P, Chi Z G. Chem. Sci., 2019, 10(1): 179.

doi: 10.1039/C8SC03019G     URL    
[181]
Yang J E, Ren Z C, Chen B, Fang M M, Zhao Z J, Tang B Z, Peng Q A, Li Z. J. Mater. Chem. C, 2017, 5(36): 9242.

doi: 10.1039/C7TC03656F     URL    
[182]
Gu M X, Shi H F, Ling K, Lv A Q, Huang K W, Singh M, Wang H, Gu L, Yao W, An Z F, Ma H L, Huang W. Research, 2020, 2020: 8183450.
[183]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.

doi: 10.1038/nmat4259    
[184]
Hamzehpoor E, Ruchlin C, Tao Y Z, Ramos-Sanchez J E, Titi H M, Cosa G, Perepichka D F. J. Phys. Chem. Lett., 2021, 12(27): 6431.

doi: 10.1021/acs.jpclett.1c01552     pmid: 34236197
[185]
Wu X G, Huang C Y, Chen D G, Liu D H, Wu C C, Chou K J, Zhang B, Wang Y F, Liu Y, Li E Y, Zhu W G, Chou P T. Nat. Commun., 2020, 11: 2145.

doi: 10.1038/s41467-020-15976-5    
[186]
Wen Y T, Liu H C, Zhang S T, Gao Y, Yan Y, Yang B. J. Mater. Chem. C, 2019, 7(40): 12502.

doi: 10.1039/C9TC04580E     URL    
[187]
Ono T, Kimura K, Ihara M, Yamanaka Y, Sasaki M, Mori H, Hisaeda Y. Chem. A Eur. J., 2021, 27(37): 9535.

doi: 10.1002/chem.v27.37     URL    
[188]
Turro N J, Lru K C, Chow M F, Lee P. Photochem. Photobiol., 1978, 27(5): 523.

doi: 10.1111/php.1978.27.issue-5     URL    
[189]
Su Q, Gan L L, Yang X M. Appl. Surf. Sci., 2021, 566: 150726.

doi: 10.1016/j.apsusc.2021.150726     URL    
[190]
Liang Y C, Gou S S, Liu K K, Wu W J, Guo C Z, Lu S Y, Zang J H, Wu X Y, Lou Q, Dong L, Gao Y F, Shan C X. Nano Today, 2020, 34: 100900.

doi: 10.1016/j.nantod.2020.100900     URL    
[191]
Zhang X F, Zhang B B, Luo J, Guo S, Wei C, Gong Y Y. Front. Chem., 2022, 9: 810458.

doi: 10.3389/fchem.2021.810458     URL    
[192]
Kaspar C, Ravoo B J, van der Wiel W G, Wegner S V, Pernice W H P. Nature, 2021, 594(7863): 345.

doi: 10.1038/s41586-021-03453-y    
[193]
Fedik N, Zubatyuk R, Kulichenko M, Lubbers N, Smith J S, Nebgen B, Messerly R, Li Y W, Boldyrev A I, Barros K, Isayev O, Tretiak S. Nat. Rev. Chem., 2022, 6(9): 653.

doi: 10.1038/s41570-022-00416-3    
[1] 唐会, 李海蓉, 刘小春, 张亚会, 王周玉, 余孝其. 近红外二区发射AIE材料光动力-光热双模式协同治疗[J]. 化学进展, 2023, 35(9): 1399-1414.
[2] 赵楚斌, 汪海林. 生物大分子液-液相分离研究方法[J]. 化学进展, 2023, 35(10): 1486-1491.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[6] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[7] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[8] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[9] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[10] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[11] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[12] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[13] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[14] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[15] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.