English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 411-433 DOI: 10.7536/PC210211 前一篇   后一篇

• 综述 •

基于铜金属有机配合物的热活化延迟荧光材料

张婷婷*(), 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺   

  1. 山西师范大学化学与材料科学学院 磁性分子与磁信息材料教育部重点实验室 临汾 041004
  • 收稿日期:2021-02-09 修回日期:2021-05-28 出版日期:2022-02-20 发布日期:2021-06-10
  • 通讯作者: 张婷婷
  • 基金资助:
    国家自然科学基金项目(21401120); 中国博士后科学基金(2018M641243); 山西省研究生教育改革课题(2019JG126); 山西省高等学校教学改革创新项目(J2020122); 山西师范大学教学改革创新项目(2019JGXM-01)

Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes

Tingting Zhang(), Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu   

  1. Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
  • Received:2021-02-09 Revised:2021-05-28 Online:2022-02-20 Published:2021-06-10
  • Contact: Tingting Zhang
  • Supported by:
    National Natural Science Foundation of China(21401120); China Postdoctoral Science Foundation(2018M641243); Postgraduate Education Reform Project of Shanxi Province of China(2019JG126); Education Reform and Innovation Project of Shanxi Province of China(J2020122); Education Reform and Innovation Project of Shanxi Normal University(2019JGXM-01)

具有热活化延迟荧光(thermally activated delayed fluorescence, TADF)特性的配合物可以同时利用单重态和三重态激子,因此发光量子效率较高,近年来受到广大科研工作者的关注。特别是铜金属有机配合物,最低单重态和最低三重态的能量差较小,又可以通过不同配体或取代基进行调节,所以具有较好TADF性能。本文根据配位原子的类型,汇总和分析了近5年具有TADF性质的铜配合物的结构特点和发光性能,并简要讨论了其在有机发光二极管(organic light-emitting diodes,OLEDs)中的潜在应用。

The emitting materials with thermally activated delayed fluorescence (TADF) characteristics have received increasing attention in recent years. As a typical d10 metal, Cu(Ⅰ) is the most widely investigated one used to construct d10 metal-organic complexes. The copper metal-organic complexes often have certain superior luminescence properties because they can harvest both singlet and triplet excitons and exhibit much higher luminescence quantum yields close to 100%. They are cost-effectiveness and comparable with phosphorescent materials in terms of device efficiency. In addition, they have lowlying metal to ligand charge transfer(MLCT) excited states with small energy difference between the lowest singlet state and the lowest triplet state (ΔEST), which is a key point to facilitate the reverse intersystem crossing (RISC) process in tuning triplet excitons to singlet excitons for TADF emission. Meanwhile, the energy difference can be adjusted by different ligands or substituents. In this paper, we summarize and analyze the structure and luminescent properties of TADF copper complexes reported in recent five years, according to the types of the coordination atoms. These complexes are classified into four classes,and the coordination atoms are mainly N, P, X (halogen), C, S(O). We mainly discuss the effects of the structures on the luminescent properties. Finally, the potential applications in organic light-emitting diodes(OLEDs) are also prospected.

Contents

1 Introduction

2 TADF copper complexes with N and P coordination atoms

2.1 Mononuclear copper complexes with N and P coordination atoms

2.2 Binuclear copper complexes with N and P coordination atoms

3 TADF copper complexes with N, P, X (halogen) coordination atoms

3.1 Mononuclear copper complexes with N, P, X (halogen) coordination atoms

3.2 Binuclear copper complexes with N, P, X (halogen) coordination atoms

3.3 Polynuclear copper complexes with N, P, X (halogen) coordination atoms

4 TADF copper complexes with N, P, C coordination atoms

4.1 Copper complexes containing carbine ligands

4.2 Copper complex containing (iso-) cyanide ligand

5 TADF copper complexes with N, P, O(S) coordination atoms

5.1 Mononuclear copper complexes with N, P, O(S) coordination atoms

5.2 Binuclear copper complexes with N, P, O(S) coordination atoms

5.3 Polynuclear copper complexes with N, P, O(S) coordination atoms

6 TADF copper complexes by theoretical studying and designing

7 Summary and outlook

()
表1 配位原子为N、P的单核铜配合物的配体和光物理性质
Table 1 Ligands and photophysical properties of mononuclear copper complexes with N and P coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE
(cd/A)
ref
1 POP, N^N 0.08d ~290, ~350 464 82 28 - - 31
2 POP, N^N 0.10d ~290, ~350 477 99 29 - - 31
3 POP, N^N 0.14d ~290, ~370 479 83 25 - - 31
4 POP, N^N 0.20d ~290, ~350 471 84 37 - - 31
5 POP, N^N 0.10d ~290, ~370 481 87 25 - - 31
6 POP, PNNA 0.12 ~270, ~370 493 60.9 145 5.83 14.01 32
7 PNNA, Xantphos 0.12 ~270, ~370 475 40.7 51 7.42 20.24 32
8 POP, ECAF 0.09 231, 288, 354 550 22.4 5.7 14.81 47.03 33
9 POP, EHCAF 0.09 231, 288, 354 549 18.5 5.7 11.17 35.61 33
10 POP, PCAF 0.09 243, 291, 348 556 20.0 5.7 6.67 21.33 33
11 POP, czpzpy 0.18 - 518 98 23 6.34 17.34 34
12 POP, pptz 0.04 283, 342 512 27.82 13.0 - 2.1 35
13 DPEPhos, PyrTet - 260, 281 512 - 11.5 - - 22
14 DPEPhos, DPS 0.04 ~280, ~350, 525 4 - - - 36
15 DPEPhos, DPSO2 0.05 ~260, ~420, 575 < 1 - - - 36
16c POP, phen 0.21 390 560 13 2.1 - - 37
17c POP, TDZP 0.14 395 594 6 1.2 - - 37
18c POP, PhenSe 0.12 400 605 8 0.8 - - 37
20 neocuproine, dppnc 0.14d 265, 303, 393 497 38.9 15.3 15.2 48.1 39
21 neocuproine, dppnc 0.20d 272, 327, 447 588 6.6 5.5 9.0 24.5 39
22 neocuproine, dppnc 0.26d 293, 312, 339, 370, 490 657 4.2 2.1 10.2 11.3 39
23 PPh3, czpzpy 0.13 ~270, ~310, ~370 495 45 134 - - 34
24 PPh3, pptz 0.09 277, 362 490 89.87 23.6 - 1.0 35
25 PPh3, Phen, 0.24 350 550 11 2.7 - - 37
26 PPh3, TDZP, 0.21 370 577 4 1.1 - - 37
27 PPh3, PhenSe 0.14 380 592 8 1.1 - - 37
28 P3, SCN 0.08 - 520 57 4.8 - - 40
29 P4, SCN 0.21d - 543 27 4.9 - - 40
图1a 配合物1~18的结构图
Fig. 1a Structure diagram of complexes 1~18
图1b 配合物19~29的结构图
Fig. 1b Structure diagram of complexes 19~29
表2 配位原子为N、P的双核铜配合物的配体和光物理性质
Table 2 Ligands and photophysical properties of binuclear copper complexes with N and P coordination atoms
图2 配合物30~40的结构图
Fig. 2 Structure diagram of complexes 30~40
表3 配位原子为N、P、X(卤素)的单核铜配合物的配体和光物理性质
Table 3 Ligands and photophysical properties of mononuclear copper complexes with N, P, X (halogen) coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
41 POP, 4-NH2py, I 0.18 229, ~310 464 25 8.4 - - 44
42 POP, 4-Me2py, I 0.08 229, 258, ~310 448 20 9.4 - - 44
43 PPh3, dpmb, I 0.10 ~280, ~350 479 53 5.1 - - 45
44 PPh3, dpmb, Br 0.13 ~280, ~350 465 28 5.7 - - 45
45 PPh3, dpmb, Cl 0.15 ~280, ~350 464 23 4.3 - - 45
46 PPh3, dpmt, I 0.20 ~286, 312, 360 447 11 752 - - 46
47 PPh3, dpmt, Br 0.06 ~286, 312, 360 457 11 432 - - 46
48 PPh3, dpmt, Cl 0.10 ~286, 312, 360 460 5 114 2.47 - 46
49 PPh3, dpts, I 0.10 ~253, ~280, ~390 485 41 36.4 - - 47
50 PPh3, dpts, Br 0.10 ~253, ~280, ~390 506 52 48.9 7.74 - 47
51 PPh3, dpts, Cl 0.12 ~253, ~280, ~390 535 29 20.8 - - 47
52 PPh3, dppt, I 0.07 ~269, 305, ~395 515 18 9.0 - - 47
53 PPh3, dppt, Br 0.08 ~269, 305, ~395 535 7 10.0 - - 47
54 PPh3, dppt, Cl 0.06 ~269, 305, ~395 516 3 4.2 - - 47
55 LMe, Cl 0.08 ~300, ~370 517 38 4.6 21.1 67.7 48
56 LMe, Br 0.10 ~300, ~370 512 55 8.0 21.3 65.3 48
57 LMe, I 0.10 ~300, ~370 473 59 7.1 21.2 62.4 48
58 LEt, Br 0.07 ~300, ~370 487 80 6.5 22.5 69.4 48
59 LiPr, Br 0.09 ~300, ~370 486 95 8.9 18.6 55.6 48
60 PPh3, py, Cl 0.09 - 498 98 12 - - 49
61 PPh3, py, Br 0.10 - 483 95 22 - - 49
62 PPh3, py, I 0.10 - 485 90 19 - - 49
63 PPh3, nap, Cl 0.09 - 636 16 1.5 - - 49
64 PPh3, nap, Br 0.08 - 608 44 3.5 - - 49
65 PPh3, nap, I 0.07 - 571 70 5.0 - - 49
66 PPh3, 4-NMe2py, Cl 0.21 229, 258, ~310 442 38 6.8 - - 44
67 PPh3,4-NH2py, I 0.20 229, ~310 436 37 12.8 - - 44
68 tpypo, Cl - - 645 8 3 - - 50
69 tpypo, Br - - 620 18 4 - - 50
70 tpypo, I - ~230,~270, ~330 600 20 4 - - 50
71 tpyps, Cl - - ~645 ~8 ~3 - - 50
72 tpyps, Br - - ~620 ~18 ~4 - - 50
73 tpyps, I - - 595 34 8 - - 50
74 tpypse, I - - 640 4 2 - - 50
75 tpyaso, I - - 600 12 4 - - 50
76 tpym, I - - 550 28 5 - - 50
77 TTPP, Cl 0.01 398, 338, 272, 239 530 76 19 9.6 24.7 51
78 TTPP, Br 0.04 398, 340, 271, 239 523 79 16 12.4 32.7 51
79 TTPP, I 0.05 398, 340, 271, 240 521 83 11 16.3 40.8 51
图3 配合物41~79的结构图
Fig. 3 Structure diagram of complexes 41~79
表4 配位原子为N、P、X(卤素)的双核铜配合物的配体和光物理性质
Table 4 Ligands and photophysical properties of binuclear copper complexes with N, P, X (halogen) coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
80 N^P, Cl - - 485 92 8.3 - - 52
81 N^P, Br - - 501 52 12.4 - - 52
82 N^P, I - - 484 76 7.3 - - 52
83 dpypp, Cl, - - 528 23 5.0 - - 53
84 dpypp, Br - - 518 50 11.6 - - 53
85 dpypp, I - - 530 74 32.9 - - 53
86 Py3P, Cl 0.19 230~350 550 55 14.5 - - 54
87 Py3P, Br 0.15 230~350 530 53 18.3 - - 54
88 Py3P, I 0.12 230~350 520 51 20.0 - - 54
89 PPh2PAr2, I 0.05 307, 373 488 95 4.9 - - 55
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
90 PPh2PAr2, Br 0.05 309, 373 482 50 6.4 - - 55
91 PPh2PAr2, Cl 0.04 309, 375 490 42 6.3 - - 55
92 dppb, I 0.07 330, ~400 497 99 4.04 - - 56
93 dpppy, I 0.06 330, ~400 548 48 3.96 - - 56
94 dpppyz, I 0.07 330, ~400 638 2 0.41 - - 56
95 dpmb, I 0.12d 282, 332, 370 498 32 2.5 10.1 32.9 57
96 dpmb, Br 0.12d 282, 332, 370 511 28 12.5 7.3 20.4 57
97 dpmb, Cl 0.14d 282, 332, 370 527 29 4.8 8.3 22.9 57
98 dppt1, I 0.07 ~310, ~330 487 69 9.5 7.4 26.3 58
99 dppt2, I 0.05 ~310, ~330 483 86 7.6 14.5 32.2 58
100 L, Cl 0.14 310, 400 602 - - - - 59
101 Py2(Me)P=O, I 0.05 - 558 63 10 - - 60
102 Py2(Et)P=O, I - - 575 26 6.9 - - 60
103 Py2(n-C9H19)P=O, I - - 537 21 8.8 - - 60
104 Py2(Bn)P=O, I - - 536 46 5.9 - - 60
105 Py2(1-NpCH2)P=O - - 576 3 1.9 - - 60
106 PPh3, pyrpy, I 0.21d - 435 24 2.3 - - 61
107 P(m-tol)3, pyrpy, I 0.21d - 452 31 2.6 - - 61
108 P(p-tol)3, pyrpy, I 0.20d - 449 51 4.3 - - 61
109 PPh3, 3-tpyb, I 0.08d - 545 29 6.0 - - 62
110 PPh3, 4-tpyb, I 0.08d - 498 27 12.5 - - 62
111 PPh3, 3,3'-bpy, I 0.07 - 495 78 7.6 - - 63
112 PTol3, 3,3'-bpy, I 0.08 - 514 58 3.3 - - 63
113 PTol3, 4,4'-bpy, I 0.06 - 632 17 0.9 - - 63
114 P1, pyridine, I 0.05 - 485 42 20.5 - - 64
115 MePyrPHOS, P(m-tol)3, I - - 550 75 6.9 11.4 36.4 65
116 MePyrPHOS, P(iPrO)3, I - - - - 3.0 - - 66
117 MePyrPHOS,
P(pMeOPh)3, I
- - - - 4.0 - - 66
118 P^N, I 0.05 320, 350~415 488 85 7.0 - - 67
119 b, L1, I 0.03 250 524 93 5.8 - - 68
120 c, L1, I - 265 541 70 5.5 - - 68
121 d, L1, I - 250 528 80 10.2 - - 68
122 b, L2, I 0.02 250 519 89 5.5 - - 68
123 c, L2, I 0.05d 266 524 90 5.5 - - 68
124 d, L2, I 0.05d 250 524 76 6.8 - - 68
125 a, L3, I - 250 549 73 5.1 - - 68
126 b, L3, I - 250 539 73 7.3 - - 68
127 a, L4, I 0.05d 250 547 79 5.5 - - 68
128 b, L4, I 0.05d 250 519 88 6.3 - - 68
129 L', I - - 571 42 1.2 - - 69
130 L', I - - 606 57 1.0 - - 69
图4a 配合物80~108的结构图
Fig. 4a Structure diagram of complexes 80~108
图4b 配合物109~130的结构图
Fig. 4b Structure diagram of complexes 109~130
表5 配位原子为N、P、C的铜配合物的配体和光物理性质
Table 5 Ligands and photophysical properties of copper complexes with N, P, C coordination atoms
Complex ligands ΔEST (eV) Absorptions (nm)a Emissions (nm)b PLQYs (%)b τ (μs)b EQE(%) CE(cd/A) ref
131 MAC*,CzCN2 - - 438 5 0.37(33%)
1.8(67%)
- - 71
132 MAC*,CzCN - - 474 76 0.75 - - 71
133 MAC*,Cz 0.06 - 492 53 0.84 19.4 - 71
134 DAC*, CzCN2 - - 550 68 1.0 - - 71
135 DAC*,CzCN - - 616 15 0.33 - - 71
136 DAC*, Cz - - 658 12 0.39 - - 71
137 IPr, py2-BMe2, 0.09d - 475 76 11 - - 72
139 IPr, dpa 0.10 260, 315 463 22 13 - 7×10-3 73
140 IPr, dpym 0.12 269, 315 473 15 6 - 1×10-3 73
141 IPr, dpyp 0.10 265, 305 474 73 14 - 0.2 73
142 IPr, PPhpy2 0.10 244, 279, 330 503 86 13 - 0.4 73
143 Pyim, POP - ~260, ~310, ~ 370 520 56 79.84 - - 74
144 Qbim, POP - ~270, ~330 570 35 31.97(78.99%)
252.2(21.01%)
- - 74
145 Me-Pyim, POP - ~220, ~280, 400 489 61 51.5 - - 75
146 MeO-Pyim, POP - ~220, ~280, 421 510 69 57.1 - - 75
147 F-Pyim, POP - ~220,~280,424 518 42 52.4 - - 75
148 Cl-Pyim, POP - ~220,~280,440 539 58 82.4 - - 75
149 Ph-BenIm-methylPy, POP 0.13 ~290, ~330 493 96 63 - - 76
150 Ph-Im-methylPy, POP 0.11 ~270, ~320 487 100 56 - - 76
151 IMesPicCl, Cl 0.12 ~370 550 49 11 - - 77
152 IMesPicH, Cl 0.08 ~330 520 59 11 - - 77
153 IMesPicMe, Cl 0.08 ~400 523 68 9.2 - - 77
155 2,9-Me2phen,CNB(C6F5),
CN(2,6-Me2C6H3)
- 277, 296, 311, 354 564 3 3 - - 78
156 2,9-Me2phen,CNB(C6F5)3,
CN(2,6-iPr2C6H3)
- 275, 297, 312, 358 548 13 10 - - 78
157 2,9-Me2phen, NB(C6F5)3,
CN(2,4,6-Cl3C6H2)
- 278, 297, 336, 351 558 6 5.2 - - 78
158 2,9-Me2phen, NB(C6F5)3,
CN(2,4,6-Br3C6H3)
- 275, 296, 313, 338, 354 560 2 5.2 - - 78
159 2,9-Me2phen, NB(C6F5)3,
CN(3,5-(CF3)2C6H3)
- 276, 295, 309, 338, 353 551 3 9.1 - - 78
160 2,9-Me2phen, NB(C6F5)3,
CN(4-SF5C6H4)
- 275, 295, 333, 350 563 5 7.1 - - 78
161 dpmp, CN - 377 530 9 22 - - 79
图5 配合物131~161的结构图
Fig. 5 Structure diagram of complexes 131~161
表6 配位原子为N、P、O(S)的铜配合物的配体和光物理性质
Table 6 Ligands and photophysical properties of copper complexes with N, P, O(S) coordination atoms
图6 配合物162~178的结构图
Fig. 6 Structure diagram of complexes 162~178
图7 配合物179~195的结构图
Fig. 7 Structure diagram of complexes 179~195
[1]
Huang T, Jiang W, Duan L. J. Mater. Chem. C, 2018, 6(21): 5577.

doi: 10.1039/C8TC01139G     URL    
[2]
El Sayed Moussa M, Khalil A M, Evariste S, Wong H L, Delmas V, Le Guennic B, Calvez G, Costuas K, Yam V W W, Lescop C. Inorg. Chem. Front., 2020, 7(6): 1334.

doi: 10.1039/C9QI01595G     URL    
[3]
Ravaro L P, Zanoni K P S, de Camargo A S S, Energy Rep., 2020, 6: 37.
[4]
Jiang Y B, Li H H, Tao Y, Chen R F, Huang W. Prog. Chem., 2019, 31(8): 1116.
( 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 化学进展, 2019, 31(8): 1116.)

doi: 10.7536/PC190125    
[5]
Gan L. Doctoral Dissertation of South China University of Technology, 2020.
( 甘霖. 华南理工大学博士论文, 2020. ).
[6]
Li G J, Zhu Z Q, Chen Q D, Li J. Org. Electron., 2019, 69: 135.

doi: 10.1016/j.orgel.2019.02.022     URL    
[7]
Nozaki K, Iwamura M. Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence, Chapter 2, 1st ed.ed. FRA: Wiley-VCH Verlag GmbH & Co. KGaA, 2019, 61.
[8]
Osawa M, Hoshino M. Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence, Chapter 4, 1st ed.ed. FRA: Wiley-VCH Verlag GmbH & Co. KGaA, 2019, 119.
[9]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26(47): 7931.

doi: 10.1002/adma.v26.47     URL    
[10]
Parker C A, Hatchard C G. Trans. Faraday Soc., 1961, 57: 1894.

doi: 10.1039/tf9615701894     URL    
[11]
Blasse G, McMillin D R. Chem. Phys. Lett., 1980, 70(1): 1.

doi: 10.1016/0009-2614(80)80047-9     URL    
[12]
Salazar F A, Fedorov A, Berberan-Santos M N. Chem. Phys. Lett., 1997, 271(4/6): 361.

doi: 10.1016/S0009-2614(97)00469-7     URL    
[13]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21(47): 4802.

doi: 10.1002/adma.200900983     URL    
[14]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.

doi: 10.1038/nature11687     URL    
[15]
Leitl M J, Zink D M, Schinabeck A, Baumann T, Volz D, Yersin H. Top. Curr. Chem., 2016, 374(3): 1.
[16]
Zheng C, Dai Y Z, Chen L F, Li M G, Chen R F, Huang W. Progress in Chemistry, 2020, 32(9): 1352.

doi: 10.7536/PC200102    
( 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 化学进展, 2020, 32(9): 1352.)

doi: 10.7536/PC200102    
[17]
Yu J, Xiao Y F, Chen J X. Chin. J. Org. Chem., 2019, 39(12): 3460.

doi: 10.6023/cjoc201906019     URL    
( 俞佳, 肖雅方, 陈嘉雄. 有机化学, 2019, 39(12): 3460.)

doi: 10.6023/cjoc201906019    
[18]
Jiang H, Jin J B, Chen R F, Zheng C, Huang W. Prog. Chem., 2016, 28(12): 1811.

doi: 10.7536/PC160520    
( 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 化学进展, 2016, 28(12): 1811.)

doi: 10.7536/PC160520    
[19]
Wang Z Q, Bai M D, Zhang M, Zhang Z Q, Feng X, Zheng C J. Acta Chim. Sinica, 2020, 78(2): 140.

doi: 10.6023/A19100372     URL    
( 王志强, 白美丹, 张明, 张智强, 冯勋, 郑才俊. 化学学报, 2020, 78(2): 140. )

doi: 10.6023/A19100372    
[20]
Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F. Adv. Mater., 2004, 16(5): 432.

doi: 10.1002/(ISSN)1521-4095     URL    
[21]
Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F. Adv. Funct. Mater., 2006, 16(9): 1203.

doi: 10.1002/(ISSN)1616-3028     URL    
[22]
Bergmann L, Hedley G J, Baumann T, Bräse S, Samuel I D W. Sci. Adv., 2016, 2(1): e1500889.

doi: 10.1126/sciadv.1500889     URL    
[23]
Zhang Y, Schulz M, Wächtler M, Karnahl M, Dietzek B. Coord. Chem. Rev., 2018, 356: 127.

doi: 10.1016/j.ccr.2017.10.016     URL    
[24]
Bizzarri C, Hundemer F, Busch J, Bräse S. Polyhedron, 2018, 140: 51.

doi: 10.1016/j.poly.2017.11.032     URL    
[25]
Shen L. Doctoral Dissertation of Jilin University, 2020.
( 沈璐. 吉林大学博士论文, 2020. ).
[26]
Wu K L, Zhang T, Zhan L S, Zhong C, Gong S L, Lu Z H, Yang C L. Adv. Opt. Mater., 2016, 4(10): 1558.

doi: 10.1002/adom.v4.10     URL    
[27]
Peng Q, Fan D, Duan R H, Yi Y P, Niu Y L, Wang D, Shuai Z G. J. Phys. Chem. C, 2017, 121(25): 13448.

doi: 10.1021/acs.jpcc.7b00692     URL    
[28]
He T F, Ren A M, Chen S M, Yang Z Y, Yu P Y, Chen Y N, Ding X L, Shen L, Zhang H X, Zou L Y. Org. Electron., 2017, 45: 9.

doi: 10.1016/j.orgel.2017.02.039     URL    
[29]
Stoïanov A, Gourlaouen C, Vela S, Daniel C. J. Phys. Chem. A, 2018, 122(5): 1413.

doi: 10.1021/acs.jpca.7b11793     pmid: 29323493
[30]
Wang Q, Gao Y J, Zhang T T, Han J, Cui G L. RSC Adv., 2019, 9(36): 20786.

doi: 10.1039/C9RA02256B     URL    
[31]
Zhang Q, Chen J, Wu X Y, Chen X L, Yu R M, Lu C Z. Dalton Trans., 2015, 44(15): 6706.

doi: 10.1039/c5dt00865d     pmid: 25784048
[32]
Liang D, Chen X L, Liao J Z, Hu J Y, Jia J H, Lu C Z. Inorg. Chem., 2016, 55(15): 7467.

doi: 10.1021/acs.inorgchem.6b00763     pmid: 27404980
[33]
Zhang F L, Guan Y Q, Chen X L, Wang S S, Liang D, Feng Y F, Chen S F, Li S Z, Li Z Y, Zhang F Q, Lu C Z, Cao G X, Zhai B. Inorg. Chem., 2017, 56(7): 3742.

doi: 10.1021/acs.inorgchem.6b01847     pmid: 28304161
[34]
Chen X L, Lin C S, Wu X Y, Yu R M, Teng T, Zhang Q K, Zhang Q, Yang W B, Lu C Z. J. Mater. Chem. C, 2015, 3(6): 1187.

doi: 10.1039/C4TC02255F     URL    
[35]
Xu H, Yang T, Wang F, Zhang J, Zhang X, Wang H, Xu B. J. Lumin., 2019, 205: 82.

doi: 10.1016/j.jlumin.2018.08.072     URL    
[36]
Brown C M, Li C F, Carta V, Li W B, Xu Z, Stroppa P H F, Samuel I D W, Zysman-Colman E, Wolf M O. Inorg. Chem., 2019, 58(11): 7156.

doi: 10.1021/acs.inorgchem.8b03500     URL    
[37]
Farias G, Salla C A M, Heying R S, Bortoluzzi A J, Curcio S F, Cazati T, dos Santos P L, Monkman A P, de Souza B, Bechtold I H. J. Mater. Chem. C, 2020, 8(41): 14595.

doi: 10.1039/D0TC03660A     URL    
[38]
Weber M D, Garino C, Volpi G, Casamassa E, Milanesio M, Barolo C, Costa R D. Dalton Trans., 2016, 45(21): 8984.

doi: 10.1039/C6DT00970K     URL    
[39]
So G K M, Cheng G, Wang J, Chang X Y, Kwok C C, Zhang H X, Che C M. Chem. Asian J., 2017, 12(13): 1677.

doi: 10.1002/asia.v12.13     URL    
[40]
Chakkaradhari G, Eskelinen T, Degbe C, Belyaev A, Melnikov A S, Grachova E V, Tunik S P, Hirva P, Koshevoy I O. Inorg. Chem., 2019, 58(6): 3646.

doi: 10.1021/acs.inorgchem.8b03166     pmid: 30793896
[41]
Chen J, Teng T, Wang J Y, Kang L J, Chen X L, Xu L J, Yu R M, Lu C Z. Eur. J. Inorg. Chem., 2016, 2016(18): 3036.

doi: 10.1002/ejic.v2016.18     URL    
[42]
Lin L, Chen D H, Yu R M, Chen X L, Zhu W J, Liang D, Chang J F, Zhang Q, Lu C Z. J. Mater. Chem. C, 2017, 5(18): 4495.

doi: 10.1039/C7TC00443E     URL    
[43]
Artem’ev A V, Davydova M P, Berezin A S, Ryzhikov M R, Samsonenko D G. Inorg. Chem., 2020, 59(15): 10699.

doi: 10.1021/acs.inorgchem.0c01171     URL    
[44]
Huang C H, Wen M, Wang C Y, Lu Y F, Huang X H, Li H H, Wu S T, Zhuang N F, Hu X L. Dalton Trans., 2017, 46(5): 1413.

doi: 10.1039/C6DT03965K     URL    
[45]
Zhang W J, Zhou Z X, Liu L, Zhong X X, Asiri A M, Alamry K A, Li F B, Zhu N Y, Wong W Y, Qin H M. J. Lumin., 2018, 196: 425.

doi: 10.1016/j.jlumin.2017.12.064     URL    
[46]
Wei Q, Zhang R, Liu L, Zhong X X, Wang L, Li G H, Li F B, Alamry K A, Zhao Y. Dalton Trans., 2019, 48(30): 11448.

doi: 10.1039/C9DT01548E     URL    
[47]
Guo B K, Yang F, Wang Y Q, Wei Q, Liu L, Zhong X X, Wang L, Gong J K, Li F B, Wong W Y, Alamry K A, Zhao Y. J. Lumin., 2020, 220: 116963.

doi: 10.1016/j.jlumin.2019.116963     URL    
[48]
Osawa M, Hoshino M, Hashimoto M, Kawata I, Igawa S, Yashima M. Dalton Trans., 2015, 44(18): 8369.

doi: 10.1039/C4DT02853H     URL    
[49]
Ohara H, Kobayashi A, Kato M. Comptes Rendus Chimie, 2015, 18(7): 766.

doi: 10.1016/j.crci.2015.03.003     URL    
[50]
Gneuß T, Leitl M J, Finger L H, Rau N, Yersin H, Sundermeyer J. Dalton Trans., 2015, 44(18): 8506.

doi: 10.1039/c4dt02631d     pmid: 25434594
[51]
Zhang J, Duan C B, Han C M, Yang H, Wei Y, Xu H. Adv. Mater., 2016, 28(28): 5975.

doi: 10.1002/adma.201600487    
[52]
Hofbeck T, Monkowius U, Yersin H. J. Am. Chem. Soc., 2015, 137(1): 399.

doi: 10.1021/ja5109672     pmid: 25486064
[53]
Kobayashi A, Hasegawa T, Yoshida M, Kato M. Inorg. Chem., 2016, 55(5): 1978.

doi: 10.1021/acs.inorgchem.5b02160     pmid: 26866384
[54]
Baranov A Y, Berezin A S, Samsonenko D G, Mazur A S, Tolstoy P M, Plyusnin V F, Kolesnikov I E, Artem'ev A V. Dalton Trans., 2020, 49(10): 3155.

doi: 10.1039/d0dt00192a     pmid: 32083636
[55]
Kang L J, Chen J, Teng T, Chen X L, Yu R M, Lu C Z. Dalton Trans., 2015, 44(25): 11649.

doi: 10.1039/C5DT01292A     URL    
[56]
Okano Y, Ohara H, Kobayashi A, Yoshida M, Kato M. Inorg. Chem., 2016, 55(11): 5227.

doi: 10.1021/acs.inorgchem.6b00161     pmid: 27152774
[57]
Hong X, Wang B, Liu L, Zhong X X, Li F B, Wang L, Wong W Y, Qin H M, Lo Y H. J. Lumin., 2016, 180: 64.

doi: 10.1016/j.jlumin.2016.08.004     URL    
[58]
Li X Y, Zhang J Y, Zhao Z F, Yu X, Li P C, Yao Y H, Liu Z W, Jin Q H, Bian Z Q, Lu Z H, Huang C H. ACS Appl. Mater. Interfaces, 2019, 11(3): 3262.

doi: 10.1021/acsami.8b15897     URL    
[59]
Tosolini M, AvÓ J, Parola A J, Balducci G, Tecilla P. Eur. J. Inorg. Chem., 2020, 2020(40): 3859.

doi: 10.1002/ejic.v2020.40     URL    
[60]
Artem'ev A V, Ryzhikov M R, Taidakov I V, Rakhmanova M I, Varaksina E A, Bagryanskaya I Y, Malysheva S F, Belogorlova N A. Dalton Trans., 2018, 47(8): 2701.

doi: 10.1039/C7DT04758D     URL    
[61]
Liang P Y, Kobayashi A, Sameera W M C, Yoshida M, Kato M. Inorg. Chem., 2018, 57(10): 5929.

doi: 10.1021/acs.inorgchem.8b00439     URL    
[62]
Kobayashi A, Yoshida Y, Yoshida M, Kato M. Chem. Eur. J., 2018, 24(55): 14750.

doi: 10.1002/chem.v24.55     URL    
[63]
Kobayashi A, Ehara T, Yoshida M, Kato M. Inorg. Chem., 2020, 59(14): 9511.

doi: 10.1021/acs.inorgchem.0c00341     pmid: 32614600
[64]
Egly J, Bissessar D, Achard T, Heinrich B, Steffanut P, Mauro M, Bellemin-Laponnaz S. Inorganica Chimica Acta, 2021, 514: 119971.

doi: 10.1016/j.ica.2020.119971     URL    
[65]
Wallesch M, Verma A, FlÉchon C, Flügge H, Zink D M, Seifermann S M, Navarro J M, Vitova T, Göttlicher J, Steininger R, Weinhardt L, Zimmer M, Gerhards M, Heske C, Bräse S, Baumann T, Volz D. Chem. Eur. J., 2016, 22(46): 16400.

doi: 10.1002/chem.201603847     URL    
[66]
Zimmer M, Dietrich F, Volz D, Bräse S, Gerhards M. ChemPhysChem, 2017, 18(21): 3023.

doi: 10.1002/cphc.201700753     URL    
[67]
Schinabeck A, Leitl M J, Yersin H. J. Phys. Chem. Lett., 2018, 9(11): 2848.

doi: 10.1021/acs.jpclett.8b00957     pmid: 29750529
[68]
Busch J M, Zink D M, di Martino-Fumo P, Rehak F R, Boden P, Steiger S, Fuhr O, Nieger M, Klopper W, Gerhards M, Bräse S. Dalton Trans., 2019, 48(41): 15687.

doi: 10.1039/C9DT02447F     URL    
[69]
Wallesch M, Volz D, Zink D M, Schepers U, Nieger M, Baumann T, Bräse S. Chem. Eur. J., 2014, 20(22): 6578.

doi: 10.1002/chem.v20.22     URL    
[70]
Elistratova J, Faizullin B, Dayanova I, Strelnik I, Strelnik A, Gerasimova T, Fayzullin R, Babaev V, Khrizanforov M, Budnikova Y, Musina E, Katsyuba S, Karasik A, Mustafina A, Sinyashin O. Inorganica Chimica Acta, 2019, 498: 119125.

doi: 10.1016/j.ica.2019.119125     URL    
[71]
Shi S Y, Jung M C, Coburn C, Tadle A, Sylvinson M R D, Djurovich P I, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2019, 141(8): 3576.

doi: 10.1021/jacs.8b12397     URL    
[72]
Leitl M J, Krylova V A, Djurovich P I, Thompson M E, Yersin H. J. Am. Chem. Soc., 2014, 136(45): 16032.

doi: 10.1021/ja508155x     URL    
[73]
Elie M, Weber M D, di Meo F, Sguerra F, Lohier J F, Pansu R B, Renaud J L, Hamel M, Linares M, Costa R D, Gaillard S. Chem. Eur. J., 2017, 23(64): 16328.

doi: 10.1002/chem.v23.64     URL    
[74]
Wang Z Q, Zheng C J, Wang W Z, Xu C, Ji B M, Zhang X H. Inorg. Chem., 2016, 55(5): 2157.

doi: 10.1021/acs.inorgchem.5b02546     URL    
[75]
Wang Z Q, Sun X J, Fu W J, Xu C, Ji B M. J. Lumin., 2018, 204: 618.

doi: 10.1016/j.jlumin.2018.08.064     URL    
[76]
Wang J L, Chen H Y, Xu S X, Su Q Z, Zhao F, He H F. J. Photochem. Photobiol. A: Chem., 2020, 387: 112104.

doi: 10.1016/j.jphotochem.2019.112104     URL    
[77]
Nitsch J, Lacemon F, Lorbach A, Eichhorn A, Cisnetti F, Steffen A. Chem. Commun., 2016, 52(14): 2932.

doi: 10.1039/C5CC09659F     URL    
[78]
Chan K C, Cheng S C, Lo L T L, Yiu S M, Ko C C. Eur. J. Inorg. Chem., 2018, 2018(7): 897.

doi: 10.1002/ejic.v2018.7     URL    
[79]
Evariste S, El Sayed Moussa M, Wong H L, Calvez G, Yam V W W, Lescop C. Z. Anorg. Allg. Chem., 2020, 646(13): 754.

doi: 10.1002/zaac.v646.13     URL    
[80]
Osawa M. Chem. Commun., 2014, 50(15): 1801.

doi: 10.1039/c3cc47871h     URL    
[81]
Vogler A. Inorg. Chem. Commun., 2017, 82: 31.

doi: 10.1016/j.inoche.2017.05.007     URL    
[82]
Kobayashi A, Arata R, Ogawa T, Yoshida M, Kato M. Inorg. Chem., 2017, 56(8): 4280.

doi: 10.1021/acs.inorgchem.6b02578     pmid: 28079372
[83]
Artem'ev A V, Doronina E P, Rakhmanova M I, Tarasova O A, Bagryanskaya I Y, Nedolya N A. Inorg. Chem. Front., 2019, 6(3): 671.

doi: 10.1039/C8QI01302K     URL    
[84]
Lv L, Yuan K, Wang Y C. Phys. Chem. Chem. Phys., 2018, 20(9): 6548.

doi: 10.1039/C7CP08264A     URL    
[85]
Czerwieniec R, Yu J B, Yersin H. Inorg. Chem., 2011, 50(17): 8293.

doi: 10.1021/ic200811a     pmid: 21812428
[86]
Lv L, Liu K, Yuan K, Zhu Y C, Wang Y C. RSC Adv., 2018, 8(50): 28421.

doi: 10.1039/C8RA04978E     URL    
[87]
Gao Y J, Chen W K, Wang Z R, Fang W H, Cui G L. Phys. Chem. Chem. Phys., 2018, 20(38): 24955.

doi: 10.1039/C8CP03657H     URL    
[88]
Schinabeck A, Rau N, Klein M, Sundermeyer J, Yersin H. Dalton Trans., 2018, 47(47): 17067.

doi: 10.1039/c8dt04093a     pmid: 30465052
[89]
Gneuß T, Leitl M J, Finger L H, Yersin H, Sundermeyer J. Dalton Trans., 2015, 44(46): 20045.

doi: 10.1039/c5dt03065j     pmid: 26525145
[90]
He T F, Ren A M, Chen Y N, Hao X L, Shen L, Zhang B H, Wu T S, Zhang H X, Zou L Y. Inorg. Chem., 2020, 59(17): 12039.

doi: 10.1021/acs.inorgchem.0c00980     URL    
[91]
Cheng G, So G K M, To W P, Chen Y, Kwok C C, Ma C S, Guan X G, Chang X Y, Kwok W M, Che C M. Chem. Sci., 2015, 6(8): 4623.

doi: 10.1039/c4sc03161j     pmid: 29142704
[92]
Schinabeck A, Chen J, Kang L J, Teng T, Homeier H H H, Suleymanova A F, Shafikov M Z, Yu R M, Lu C Z, Yersin H. Chem. Mater., 2019, 31(12): 4392.

doi: 10.1021/acs.chemmater.9b00671    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[4] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[5] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[6] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[7] 杨智文, 詹迎迎, 籍少敏, 杨庆旦, 李琦, 霍延平. 含硼有机发光二极管材料与器件[J]. 化学进展, 2019, 31(6): 906-928.
[8] 袁跃华, 朱永军, 胡伟, 秦君, 田茂忠, 冯锋. 基于小分子的铜离子与汞离子双识别荧光探针[J]. 化学进展, 2019, 31(4): 550-560.
[9] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[10] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[11] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[12] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.
[13] 丁奇峰, 杨雅琼, 缪文俊, 黄和, 于杨*, 黄菲*. 基于N,S-缩烯酮的杂环合成的研究[J]. 化学进展, 2018, 30(11): 1615-1623.
[14] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[15] 黄辉, 陈俊, 卢会茹, 周梦雪, 胡毅, 柴之芳. 帕金森病中的关键金属元素[J]. 化学进展, 2018, 30(10): 1592-1600.