English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1116-1128 DOI: 10.7536/PC190125 前一篇   后一篇

• •

热活化延迟荧光聚合物及其电致发光器件

蒋云波, 李欢欢**(), 陶冶, 陈润锋**(), 黄维**()   

  1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子和信息显示协同创新中心 南京 210023
  • 收稿日期:2019-01-18 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 李欢欢, 陈润锋, 黄维
  • 基金资助:
    国家自然科学基金项目(21604039); 国家自然科学基金项目(21674049); 国家自然科学基金项目(21772095); 国家自然科学基金项目(21704042)

Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices

Yunbo Jiang, Huanhuan Li**(), Ye Tao, Runfeng Chen**(), Wei Huang**()   

  1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2019-01-18 Online:2019-08-15 Published:2019-05-30
  • Contact: Huanhuan Li, Runfeng Chen, Wei Huang
  • About author:
    ** E-mail: (Huanhuan Li)
  • Supported by:
    National Natural Science Foundation of China(21604039); National Natural Science Foundation of China(21674049); National Natural Science Foundation of China(21772095); National Natural Science Foundation of China(21704042)

热活化延迟荧光(TADF)聚合物,不仅具有小分子TADF材料高的激子利用效率特性,而且还具备分子多样性好、可溶液加工、低成本、以及易实现大面积柔性器件等诸多优势,在近几年受到广泛的关注并展现了良好的应用前景。本文从TADF聚合物分子设计原理、器件结构及发光机理出发,依据TADF聚合物的构筑方法不同,概括了其结构设计策略,详述了各种类型TADF聚合物的分子结构和光电性能及其在有机电致发光器件领域应用的研究进展,最后探讨了TADF聚合物存在的问题,并展望了其发展前景。

Thermally activated delayed fluorescence(TADF) polymers, which not only have the feature of high exciton utilization efficiency, but also possess the advantages of good molecular diversity, solution processing, low cost, and easy realization of large-area flexible devices, etc, have sparked immense attention and shown great potential in the future applications in the past few years. In this review, we start with a description of molecule design principle, device structure and luminescence mechanism of TADF polymers. Next, the structural modification strategies of TADF polymers are summarized according to the different construction strategies and the molecular structure and optoelectronics properties of different types of TADF polymers with a particular emphasis on the recent advances in organic light emitting diodes are illustrated. Finally, the current problems of TADF polymers are discussed, and the perspective and development of TADF polymers are also presented.

()
图1 TADF聚合物的分子设计策略
Fig. 1 Molecular design strategies of TADF polymers
图2 TADF聚合物(a)电致发光过程和(b)OLEDs的器件结构的示意图
Fig. 2 Schematic diagram of(a) electroluminescence process and (b) OLED device structure of TADF polymers
图3 以三嗪为核的树枝状TADF聚合物[31,32,33,34,35]
Fig. 3 Dendritic TADF polymers with a triazine core[31,32,33,34,35]
图4 以二苯砜为核的树枝状TADF聚合物[36,37,38,39]
Fig. 4 Dendritic TADF polymers with a diphenyl sulfone core[36,37,38,39]
图5 以二苯甲酮为核的树枝状TADF聚合物[40,41,42]
Fig. 5 Dendritic TADF polymers with a benzophenone core[40,41,42]
图6 以蒽二酮为核的树枝状TADF聚合物[43, 44]
Fig. 6 Dendritic TADF polymers with an anthraquinone core[43, 44]
图7 以苯甲腈为核的树枝状TADF聚合物[17, 47, 48]
Fig. 7 Dendritic TADF polymers with a benzonitrile core[17, 47, 48]
图8 给体和受体交替共聚型的TADF聚合物[49,50,51]
Fig. 8 TADF polymers with alternating donors and acceptors[49,50,51]
图9 受体在侧链的接枝型TADF聚合物[18,23,50,52~60]
Fig. 9 TADF Polymers with grafted acceptors[18,23,50,52~60]
图10 自主体型的TADF聚合物[61,62,63]
Fig. 10 TADF polymers with self-host units[61,62,63]
图11 非共轭主链型的TADF聚合物[19, 24, 58,64~66]
Fig. 11 Non-conjugated TADF polymers with pendant TADF units[19, 24, 58, 64~66]
[1]
Parker C A, Hatchard C G . J. Phys. Chem., 1962,66:2506.
[2]
McMillin G R . Chem. Phys. Lett., 1980,70:1.
[3]
Berberan-Santos M N, Garcia J M M . J. Am. Chem. Soc., 1996,118:9391.
[4]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C . Adv.Mater., 2009,21:4802. https://www.ncbi.nlm.nih.gov/pubmed/21049498

doi: 10.1002/adma.200900983     URL     pmid: 21049498
[5]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C . Nature, 2012,492:234. https://www.ncbi.nlm.nih.gov/pubmed/23235877

doi: 10.1038/nature11687     URL     pmid: 23235877
[6]
Lin T, Chatterjee T, Tsai W, Lee W, Wu M, Jiao M, Pan K, Yi C, Chung C, Wong K, Wu C . Adv.Mater., 2016,28:6976. https://www.ncbi.nlm.nih.gov/pubmed/27271917

doi: 10.1002/adma.201601675     URL     pmid: 27271917
[7]
Sun J W, Lee J, Moon C, Kim K, Shin H, Kim J . Adv. Mater., 2014,26:5684. https://www.ncbi.nlm.nih.gov/pubmed/24890507

doi: 10.1002/adma.201401407     URL     pmid: 24890507
[8]
Zeng W, Lai H, Lee W, Jiao M, Shiu Y, Zhong C, Gong S, Zhou T, Xie G, Sarma M, Wong K, Wu C, Yang C . Adv. Mater., 2018,30:1704961.
[9]
Liang J, Li C, Zhuang X, Ye K, Liu Y, Wang Y . Adv. Funct. Mater., 2018,28:1707002.
[10]
姜贺(Jiang H), 靳继彪(Jin J B), 陈润锋(Chen R F), 郑超(Zheng C), 黄维(Huang W) . 化学进展( Progress in Chemistry), 2016,28(12):1811.
[11]
Liu Y, Li C, Ren Z, Yan S, Bryce M R . Nat. Rev. Mater., 2018,3:180204.
[12]
Wei Q, Ge Z, Voit B . Macromol. Rapid Comm., 2018,40:1800570. http://doi.wiley.com/10.1002/marc.201800570

doi: 10.1002/marc.201800570     URL    
[13]
Wong M Y . J. Electron. Mater., 2017,46:6246. http://link.springer.com/10.1007/s11664-017-5702-7

doi: 10.1007/s11664-017-5702-7     URL    
[14]
Zhang B, Cheng Y . Chem. Rec., 2018,18:152.
[15]
Steinegger A, Klimant I, Borisov S M . Adv. Opt. Mater., 2017,5:1700372.
[16]
Dias F B, Penfold T J, Monkman A P . Methods Appl. Fluores., 2017,5:12001.
[17]
Ban X, Zhu A, Zhang T, Tong Z, Jiang W, Sun Y . Chem. Commun., 2017,53:11834. https://www.ncbi.nlm.nih.gov/pubmed/29039861

doi: 10.1039/c7cc06967g     URL     pmid: 29039861
[18]
Wang Y, Zhu Y, Xie G, Zhan H, Yang C, Cheng Y . J. Mater. Chem . C, 2017,5:10715.
[19]
Li C, Nobuyasu R S, Wang Y, Dias F B, Ren Z, Bryce M R, Yan S . Adv. Opt. Mater., 2017,5:1700435.
[20]
Leitl M J, Krylova V A, Djurovich P I, Thompson M E, Yersin H . J. Am. Chem. Soc., 2014,136:16032. https://www.ncbi.nlm.nih.gov/pubmed/25260042

doi: 10.1021/ja508155x     URL     pmid: 25260042
[21]
Chen T, Zheng L, Yuan J, An Z, Chen R, Tao Y, Li H, Xie X, Huang W . Sci. Rep., 2015,5:10923. https://www.ncbi.nlm.nih.gov/pubmed/26161684

doi: 10.1038/srep10923     URL     pmid: 26161684
[22]
Yao L, Yang B, Ma Y . Sci. China Chem., 2014,57:335. http://link.springer.com/10.1007/s11426-013-5046-y

doi: 10.1007/s11426-013-5046-y     URL    
[23]
Wei Q, Kleine P, Karpov Y, Qiu X, Komber H, Sahre K, Kiriy A, Lygaitis R, Lenk S, Reineke S, Voit B . Adv. Funct. Mater., 2017,27:1605051.
[24]
Shao S, Hu J, Wang X, Wang L, Jing X, Wang F . J. Am. Chem. Soc., 2017,139:17739. https://www.ncbi.nlm.nih.gov/pubmed/29149569

doi: 10.1021/jacs.7b10257     URL     pmid: 29149569
[25]
Valeur B, Berberan-Santos M N . Molecular Fluorescence: Principlesand Applications. 2nd ed. Newyork: John Wiley & Sons, 2012.
[26]
Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W . Adv. Mater., 2014,26:7931. https://www.ncbi.nlm.nih.gov/pubmed/25230116

doi: 10.1002/adma.201402532     URL     pmid: 25230116
[27]
Tang C W, Vanslyke S A . Appl. Phys. Lett., 1987,51:913.
[28]
Huang T, Jiang W, Duan L . J. Mater. Chem. C, 2018,6:5577.
[29]
Xie Y, Li Z . J. Polym. Sci. Pol. Chem., 2017,55:575.
[30]
An Z, Chen R, Yin J, Xie G, Shi H, Tsuboi T, Huang W . Chem. Eur. J., 2011,17:10871. https://www.ncbi.nlm.nih.gov/pubmed/21887832

doi: 10.1002/chem.201101118     URL     pmid: 21887832
[31]
Albrecht K, Matsuoka K, Fujita K, Yamamoto K . Angew. Chem. Int. Ed., 2015,54:5677. https://www.ncbi.nlm.nih.gov/pubmed/25753430

doi: 10.1002/anie.201500203     URL     pmid: 25753430
[32]
Albrecht K, Matsuoka K, Yokoyama D, Sakai Y, Nakayama A, Fujita K, Yamamoto K . Chem. Commun., 2017,53:2439. https://www.ncbi.nlm.nih.gov/pubmed/28174770

doi: 10.1039/c6cc09275f     URL     pmid: 28174770
[33]
Ban X, Jiang W, Lu T, Jing X, Tang Q, Huang S, Sun K, Huang B, Lin B, Sun Y . J. Mater. Chem. C, 2016,4:8810. http://xlink.rsc.org/?DOI=C6TC03063G

doi: 10.1039/C6TC03063G     URL    
[34]
Sun K, Sun Y, Huang T, Luo J, Jiang W, Sun Y . Org. Electron., 2017,42:123.
[35]
Godumala M, Choi S, Kim H J, Lee C, Park S, Moon J S, Woo K S, Kwon J H, Cho M J, Choi D H . J. Mater. Chem. C, 2018,6:1160. http://xlink.rsc.org/?DOI=C7TC04460G

doi: 10.1039/C7TC04460G     URL    
[36]
Luo J, Gong S, Gu Y, Chen T, Li Y, Zhong C, Xie G, Yang C . J. Mater. Chem. C, 2016,4:2442.
[37]
Li J, Liao X, Xu H, Li L, Zhang J, Wang H, Xu B . Dyes Pigments., 2017,140:79.
[38]
Ban X, Lin B, Jiang W, Sun Y . Chem.-Asian J., 2017,12:216. https://www.ncbi.nlm.nih.gov/pubmed/27905194

doi: 10.1002/asia.201601384     URL     pmid: 27905194
[39]
Ban X, Jiang W, Sun K, Lin B, Sun Y . ACS Appl. Mater. Inter., 2017,9:7339. https://www.ncbi.nlm.nih.gov/pubmed/28192659

doi: 10.1021/acsami.6b14922     URL     pmid: 28192659
[40]
Li Y, Xie G, Gong S, Wu K, Yang C . Chem. Sci., 2016,7:5441. https://www.ncbi.nlm.nih.gov/pubmed/30034683

doi: 10.1039/c6sc00943c     URL     pmid: 30034683
[41]
Matsuoka K, Albrecht K, Yamamoto K, Fujita K . Sci. Rep., 2017,7:41780. https://www.ncbi.nlm.nih.gov/pubmed/28139768

doi: 10.1038/srep41780     URL     pmid: 28139768
[42]
Matsuoka K, Albrecht K, Nakayama A, Yamamoto K, Fujita K . ACS Appl. Mater. Inter., 2018,10:33343.
[43]
Sun K, Chu D, Cui Y, Tian W, Sun Y, Jiang W . Org. Electron., 2017,48:389.
[44]
Sun K, Sun Y, Liu D, Feng Y, Zhang X, Sun Y, Jiang W . Dyes Pigments., 2017,147:436.
[45]
Justin Thomas K R, Velusamy M, Lin J T, Tao Y T, Chuen C H . Adv. Funct. Mater., 2004,14:387.
[46]
Yassar A, Demanze F, Jaafari A, El Idrissi M, Coupry C . Adv. Funct. Mater., 2002,12:699.
[47]
Sun K, Sun Y, Tian W, Liu D, Feng Y, Sun Y, Jiang W . J. Mater. Chem. C, 2018,6:43.
[48]
Ban X, Zhu A, Zhang T, Tong Z, Jiang W, Sun Y . ACS Appl. Mater. Inter., 2017,9:21900. https://www.ncbi.nlm.nih.gov/pubmed/28593760

doi: 10.1021/acsami.7b04146     URL     pmid: 28593760
[49]
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C . Adv. Mater., 2016,28:4019. https://www.ncbi.nlm.nih.gov/pubmed/27001891

doi: 10.1002/adma.201505026     URL     pmid: 27001891
[50]
Wang Y, Zhu Y, Xie G, Xue Q, Tao C, Le Y, Zhan H, Cheng Y . Org. Electron., 2018,59:406.
[51]
Hu Y, Cai W, Ying L, Chen D, Yang X, Jiang X, Su S, Huang F, Cao Y . J. Mater. Chem. C, 2018,6:2690. https://www.ncbi.nlm.nih.gov/pubmed/32254222

doi: 10.1039/c8tb00153g     URL     pmid: 32254222
[52]
Zhu Y, Zhang Y, Yao B, Wang Y, Zhang Z, Zhan H, Zhang B, Xie Z, Wang Y, Cheng Y . Macromolecules., 2016,49:4373.
[53]
Zhu Y, Yang Y, Wang Y, Yao B, Lin X, Zhang B, Zhan H, Xie Z, Cheng Y . Adv. Opt. Mater., 2018,6:1701320.
[54]
Wang Y, Zhu Y, Lin X, Yang Y, Zhang B, Zhan H, Xie Z, Cheng Y . J. Mater. Chem. C, 2018,6:568.
[55]
Yang Y, Zhu Y, Wang Y, Wang S, Zhan H, Cheng Y . J. Polym. Sci. Pol. Chem., 2018,56:1989.
[56]
Yang Y, Wang S, Zhu Y, Wang Y, Zhan H, Cheng Y . Adv. Funct. Mater., 2018,28:1706916.
[57]
Kim H J, Lee C, Godumala M, Choi S, Park S Y, Cho M J, Park S, Choi D H . Polym. Chem., 2018,9:1318.
[58]
Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S, Monkman A P, Bryce M R, Dias F B . Adv. Opt. Mater., 2016,4:597.
[59]
Liu Y, Wang Y, Li C, Ren Z, Ma D, Yan S . Macromolecules, 2018,51:4615.
[60]
Xie G, Luo J, Huang M, Chen T, Wu K, Gong S, Yang C . Adv. Mater., 2017,29:1604223.
[61]
Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M . Adv. Mater., 2015,27:7236. https://www.ncbi.nlm.nih.gov/pubmed/26457683

doi: 10.1002/adma.201501090     URL     pmid: 26457683
[62]
Luo J, Xie G, Gong S, Chen T, Yang C . Chem. Commun., 2016,52:2292. https://www.ncbi.nlm.nih.gov/pubmed/26725490

doi: 10.1039/c5cc09797e     URL     pmid: 26725490
[63]
Yang Y, Zhao L, Wang S, Ding J, Wang L . Macromolecules, 2018,51:9933.
[64]
Ren Z, Nobuyasu R S, Dias F B, Monkman A P, Yan S, Bryce M R . Macromolecules, 2016,49:5452.
[65]
Li C, Wang Y, Sun D, Li H, Sun X, Ma D, Ren Z, Yan S . ACS Appl. Mater. Inter., 2018,10:5731. https://www.ncbi.nlm.nih.gov/pubmed/29360340

doi: 10.1021/acsami.8b00136     URL     pmid: 29360340
[66]
Zeng X, Luo J, Zhou T, Chen T, Zhou X, Wu K, Zou Y, Xie G, Gong S, Yang C . Macromolecules, 2018,51:1598.
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[4] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[5] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[6] 杨智文, 詹迎迎, 籍少敏, 杨庆旦, 李琦, 霍延平. 含硼有机发光二极管材料与器件[J]. 化学进展, 2019, 31(6): 906-928.
[7] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[8] 林英武. 人工金属酶分子设计新进展:肌红蛋白研究实例分析[J]. 化学进展, 2018, 30(10): 1464-1474.
[9] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[10] 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 基于给-受体结构的热活化延迟荧光材料[J]. 化学进展, 2016, 28(12): 1811-1823.
[11] 姜鸿基*, 张庆维. 三苯基膦氧基团在合成高性能有机电致发光材料中的应用[J]. 化学进展, 2016, 28(10): 1515-1527.
[12] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[13] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[14] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[15] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.