English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1454-1491 DOI: 10.7536/PC220325   后一篇

• 综述 •

凝聚液态水溶液中的化学反应

闫文付, 徐如人*()   

  1. 吉林大学无机合成与制备化学国家重点实验室 化学学院 长春 130012
  • 收稿日期:2022-12-20 修回日期:2022-03-25 出版日期:2022-07-24 发布日期:2022-06-20
  • 通讯作者: 徐如人
  • 基金资助:
    国家自然科学基金项目(U1967215)

Chemical Reactions in Aqueous Solutions with Condensed Liquid State*

Wenfu Yan, Ruren Xu()   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University,Changchun 130012, China
  • Received:2022-12-20 Revised:2022-03-25 Online:2022-07-24 Published:2022-06-20
  • Contact: Ruren Xu
  • Supported by:
    National Natural Science Foundation of China(U1967215)

液态水是进行化学反应的最重要介质与溶剂之一,也是研究在凝聚(液)态中进行化学反应的主要对象。在不同的外界条件下(特别是极端条件下),液态水的组成、结构与性能会发生很大的变化,促使在其中进行的化学反应呈现不同的特点,因而形成了温和条件下、水热条件下(Hydrothermal condition)与超临界水热条件下(Supercritical water codition)三大类型反应的凝聚态化学。本文立足凝聚态,讨论了在温和(一般)条件下,液态水与水溶液的组成、结构与性能对发生于其中的化学反应(包括溶解与结晶反应、盐类复分解反应、酸碱反应、沉淀反应、成胶与晶化反应、水解反应、氧化-还原反应以及配位化学反应)的影响,包括对反应物存在状态与化学活性,化学反应的过程与机理,反应的中间与最后产物的组成、结构等造成的影响,以及产生的结果与规律等有关的反应化学。通过这些讨论我们提出应从凝聚态的角度看待发生于液态水溶液中的化学反应,并希望这种新视角对研究在其他类型液体(诸如有机溶剂、离子液体、分子熔体等)中进行的化学反应时有所帮助,同时能加强彼此间的交流、讨论与批判,协力为推动以液态为主要研究对象的凝聚态化学的研究与学科建设提供有益的基础。

Liquid water is one of the most important media and solvent for chemical reactions, which is also the main object in scholarly investigation of the chemical reactions occurring in condensed (liquid) matter. The composition, structure, and characteristics of water may vary significantly under different conditions, especially under extreme conditions, which may change both the rates (kinetics) and favorability (thermodynamics) of individual chemical reactions in solution. Thus, the condensed matter chemistry under (normal) mild conditions, hydrothermal conditions, and supercritical water conditions may differ considerably. In this review, we discuss the influences of the composition, structure, and characteristics of liquid water and solution on the chemical reactions within, which includes the state and reactivity of the reactants, processes and mechanisms of reactions, compositions and structures of the intermediate and final products. Examples of these reactions are dissolution and crystallization, double decomposition reaction of salts, acid-base reaction, precipitation, gelation and crystallization, hydrolysis, redox reaction, and coordination reactions. In our discussions, we emphasize that it is essential to consider the chemical reactions occurring in aqueous solutions at the level of condensed matter physical science; and similarly it is also essential to investigate chemical reactions occurring in other types of liquids such as organic solvents, ionic liquids, and molecular substances in molten state. We well understand that this review will result in more in-depth discussions and possibly criticisms about the topics of condensed matter chemistry as well as our perspectives among our peer researchers, which will definitely advance this emerging science in liquids and possibly serve as a base for establishing the new discipline of condensed matter chemistry.

Contents

1 Introduction

1.1 Property and structure of liquid water

1.2 Composition and structure of aqueous solution

2 Dissolution and crystallization

2.1 dissolution and conversion of salts

2.2 Solubility under thermodynamics equilibrium state

2.3 Condensed matter chemistry in crystallization

3 Double decomposition reaction

4 Acid-base reaction

5 Precipitation reaction

5.1 Crystalline precipitation

5.2 Non-crystalline precipitation

5.3 Non-crystalline nickel borate

5.4 Silica gel and amorphous SiO2 precipitation

6 Gelation and crystallization

6.1 Polymerization of aluminosilicate

6.2 Hydrated aluminosilicate gel and crystallization of zeolites

7 Hydrolysis reaction

8 Redox reaction

8.1 Redox reactions of media water

8.2 pH and redox potential

8.3 Disproportionation reactions

8.4 Influence of precipitation on oxidation-reduction (redox) reactions

8.5 Influence of complexation on redox potential

8.6 Influence of trace amount of oxygen on oxidation-reduction (redox) reactions

8.7 Hydration of electron

9 Coordination reaction

10 Conclusion and outlook

()
图1 水的多面体结构模型:(a)五角十二面体(512); (b)十四面体(51262); (c)十五面体(51263)[3]
Fig. 1 Structures of some polyhedra for liquid water: (a) pentagonal dodecahedron (512), (b) 14-hedron (51262), and (c) 15-hedron (51263)[3]
图式1 MgSO4水溶液中主要物种的结构示意图[7]
Scheme 1 Schematic diagrams of the main species for aqueous MgSO4 solutions[7]
图2 水分子的极性结构以及溶解NaCl过程示意图
Fig. 2 Schematic drawing of the polar structure of H2O and the dissolution process of NaCl in aqueous solution.
图3 卤化物溶解焓与两种离子水合焓差值之间的关系:差值越大溶解过程中放热越强烈[15]
Fig. 3 The correlation between enthalpies of solution of halides and the differences between the hydration enthalpies of the ions. Dissolution is most exothermic when the difference is large[15]
图4 MgCl2-H2O二元体系多温溶解度相图[16]
Fig. 4 The phase diagram of MgCl2-H2O on solubility at various temperatures[16]
表1 MgCl2-H2O二元体系在不同温度时的浓度数据和固相组成[17]
Table 1 The concentration of MgCl2 in aqueous solution at various temperatures and the composition of the solid phase[17]
图5 MgCl2·12H2O 中的由[Mg(H2O)6]2+和[Cl(H2O)6]- 通过点共享形成的层状结构,四边形代表[Mg(H2O)6]2+,菱形代表[Cl(H2O)6]-。为了清晰起见,两个未被共享的边(即H2O)未画出[18]
Fig. 5 Layer formed from vertex-sharing [Mg(H2O)6]2+ and [Cl(H2O)6]- groups in MgCl2·12 H2O (diagrammatic). The squares represent [Mg(H2O)6]2+ and the rhombuses [Cl(H2O)6]- groups. Two (unshared) vertices of each octahedron are not shown[18]
表2 MxXy·zH2O型盐水合物的分类[21]
Table 2 A classification of salt hydrates MxXy·zH2O[21]
图6 溶液状态图[24]
Fig. 6 State of solution[24]
图7 Na+、Mg2+‖Cl-、 SO 4 2 --H2O四元交互体系在0 ℃(a)[31]、25 ℃(b)、55 ℃(c)和75 ℃(d)的平衡溶解度相图[32]:Ast: Na2SO4·MgSO4·4H2O; Van: 3Na2SO4·MgSO4; Loe: 6Na2SO4·7MgSO4·15H2O; Bis: MgCl2·6H2O; S10: Na2SO4·10H2O; M1: MgSO4·H2O; M4: MgSO4·4H2O; M6: MgSO4·6H2O; M7: MgSO4·7H2O; 镁乳:MgSO4·H2O,其中含有NaCl和KCl
Fig. 7 The phase diagram of Na+, Mg2+‖Cl-, SO 4 2 --H2O on solubility at 0 ℃ (a)[31], 25 ℃ (b), 55 ℃ (c), and 75 ℃ (d). Ast: Na2SO4·MgSO4·4H2O; Van: 3Na2SO4·MgSO4; Loe: 6Na2SO4·7MgSO4·15H2O; Bis: MgCl2·6H2O; S10: Na2SO4·10H2O; M1: MgSO4·H2O; M4: MgSO4·4H2O; M6: MgSO4·6H2O; M7: MgSO4·7H2O; milk of magnesia:MgSO4·H2O, containing NaCl and KCl[32]
图8 四元体系(Na+、Mg2+‖Cl-、 SO 4 2 --H2O)在35 ℃时介稳相图(实线)与稳定相图(虚线)[33]
Fig. 8 The stablephase (solid line) and meta-stable phase (dash line) diagram of the Na+, Mg2+‖Cl-, SO 4 2 -―H2O system at 35 ℃[33]
表3 图8中缩写所代表的化学式和中文名[33]
Table 3 The formula and Chinese name of the abbreviations in Fig. 8[33]
图9 水合氢离子H3O+的结构图[37]
Fig. 9 The schematic drawing of the structure of H3 O +[37]
图10 Eigen阳离子H9O4+的结构图[37]
Fig. 10 The schematic drawing of the structure of Eigen cation of H9O4+[37]
图11 不同pH值的磷酸溶液中的物种分布[56]
Fig. 11 The distribution diagram for the various forms of the triprotic acid phosphoric acid in water, as a function of pH[56]
图式2 酸性水溶液中的缩聚反应
Scheme 2 Polycondensation reaction in aeidic aqueous solution
图12 B2O3-H2O相图[63]
Fig. 12 Phase diagram for the B2O3-H2O system[63]
图13 H3BO3的层状结构,虚线表示O—H…O键[64]
Fig. 13 Portion of a layer of H3BO3. Broken lines indicate O—H…O bonds[64]
图14 结晶性偏硼酸的一种层状结构中B3O3(OH)3分子的排列以及其环状(B3O6)3-基本结构单元[63]
Fig. 14 Arrangement of B3O3(OH)3 molecules in a layer of one form of crystalline metaboric acid and the structure of cyclic (B3O63-[63]
图式3 [B3O3(OH)4]-和[B4O5(OH)4]2-的结构
Scheme 3 The structure [B3O3(OH)4]- and [B4O5(OH)4]2-
图15 羟化硼酸根和/或多聚硼酸根中的环状B-O体系,a、b、c的下角标指环外的配位O原子,分子式根据该结构单元处于3D结构中时计算得到[66]
Fig. 15 Cyclic boron-oxygen sysems in hydroxyborates and/or polyborates. The subscript is the number of extra-annular O atoms. The formula shows the composition of the 3D anion formed if all of these are shared with other similar units[66]
图16 H3PO4晶体中的氢键[36]
Fig. 16 The hydrogen bonds in crystalline H3PO4[36]
图17 KH2PO4投影在基面上的部分结构(省略了K+)。虚线表示将PO4四面体连接成无限三维网络的氢键[67]
Fig. 17 Part of the structure of KH2PO4 projected on to the basal plane (K+ ions omitted). The broken lines represent hydrogen bonds which link the PO4 tetrahedra into an infinite 3-dimensional network[67]
表4 第III B族元素氢氧化物的溶度积[69]
Table 4 The solubility product of the hydroxides of IIIB group[69]
图18 Sc(OH)3的晶体结构[21]
Fig. 18 The crystal structure of Sc(OH)3[21]
图19 无定形硼酸镍的局部结构图[77]
Fig. 19 Local structure diagram of amorphous nickel borate[77]
图20 多聚硼酸根离子在不同pH水溶液中的分布[76]
Fig. 20 The distribution of polyborates in the aqueous solution with various pHs[76]
图21 几种SiO2基本胶粒结合方式示意图:(a) 硅溶胶; (b) 硅凝胶; (c) 无定形SiO2粉末[62]
Fig. 21 (a) silica sol; (b) silica gel; (c) silica powder[62]
图22 SiO2的聚合行为。在碱性溶液(pH=7~10)但包含盐时(B),随着胶粒间的自发聚集其尺寸变大;而在pH<7(酸性溶液)或在pH=7~10但同时含有盐时(A),胶粒会聚集成三维网格结构并生成凝胶[78]
Fig. 22 Polymerization behavior of silica. In basic solution (B) particles in sol grow in size with decrease in numbers: in acid solution or in presence of flocculating salts (A), particles aggregate into three-dimensinal networks and form gels[78]
图23 碱性硅溶胶的胶团结构及双电层示意图。δ为紧密层;Δ为扩散层;ϕo为总电位;ζ为电动电位;- - -为表面Si-O基团;+为Na+等阳离子;-为OH-等阴离子;m, x, y, z皆为正整数[79]
Fig. 23 Schematical illustration of the structure and distatic-charge-layer of colloidal particle of alkali silica sol. δ: compact layer;Δ: diffuse layer; ϕo: total potential; ζ: electrokinetic potential; - - -: surface Si-O groups; +: cations such as Na+;-: anions such as OH-; m, x, y, z: integral number[79]
图24 硅溶胶胶凝成凝胶过程中的胶粒间键的形成[62]
Fig. 24 Bond formation between silica particles. With little or no charge repulsion, collision results in formation of interparticle siloxane bonds, catalyzed by base. Once bonded, the particles grow together[62]
表5 硅凝胶胶粒堆积的配位数与密度的关系[80]
Table 5 Correlation between the stacking density and coordination number[80]
表6 硅凝胶孔体积与堆积密度的关系[81]
Table 6 Correlation between the pore volume and stacking density of SiO2 gel[81]
图25 配位数为3的SiO2凝胶结构[82]
Fig. 25 Packing of spheres with coordination number of three[82]
图26 配位数为3,2,2,3的SiO2凝胶结构。黑球同一对白球相邻后再与另外三个黑球相邻[83]
Fig. 26 Packing of spheres with coordination numbers of 3, 2, 2, 3. Black spheres touch three others[83]
图27 不同浓度硅酸的胶凝时间和pH,硅酸浓度:(1) 0.0582 M;(2) 0.0713 M;(3) 0.0855 M;(4) 0.113 M;(5) 0.129 M;(6) 0.194 M[60]
Fig. 27 The gelation time and pH of the solution with various silica concentrations (1) 0.0582 M; (2) 0.0713 M; (3) 0.0855 M; (4) 0.113 M; (5) 0.129 M; (6) 0.194 M[60]
图28 Silicalite-1结构示意图及沿[010]方向观察(a)和沿[100]方向观察(b)模板剂在孔道中的位置[84]
Fig. 28 The schematic drawing of the structure of silicalite-1 (Si-ZSM-5) and the position of the template of TPA+ in the channels viewed along the direction of [010] (a) and [100] (b)[84]
图29 Na2O-Al2O3-SiO2-H2O体系凝胶相图(85%H2O)[89]
Fig. 29 Component correlations in initial Na-aluminosilicate gels (starred circles); in gel skeletons washed free of excess alkali (open circles); in gel liquid phases (black circles) in mole percent[89]
表7 硅铝凝胶组成与晶化产物NaA、NaX、NaY型沸石组成与结构[90,91]
Table 7 Molar composition of the initial mixtures for the crystallization of NaA, NaX, and NaY and the composition and structure type of the corresponding products[90,91]
图30 NaA型沸石的晶体结构[92]
Fig. 30 The crystal structure of NaA (LTA) zeolite[92]
图31 NaX与NaY型(FAU)沸石的晶体结构[93]
Fig. 31 The crystal structure of NaX and NaY (FAU) zeolite[93]
图32 具有球形对称性(a)、圆柱形对称性(b)和极化导致四面体电荷分布状态的OH-(c),以及导致三种OH-结构状态的对应的金属离子和其极化指数[95]
Fig. 32 The OH- with effective spherical symmetry (a), cylindrical symmetry (b), or polarized so that tetrahedral charge distributin is developed (c) and the corresponding cations with different polarizing power[95]
图33 理想情况下Al(OH)3中的层结构,圆圈代表位于Al(带阴影的小圆圈)平面上侧和下侧的OH基团[97]
Fig. 33 Part of a layer of Al(OH)3 (idealized). The heavy and light open circles represent OH groups above and below the plane of the Al atoms (shaded)[97]
图34 Al(OH)3沿平行于层的方向的结构示意图,显示了不同层之间的OH基团的不同堆垛情形[98]
Fig. 34 The structure of Al(OH)3, viewed in a direction parallel to the layers, to illustrate the difference in packing of OH groups of different layers[98]
图35 (a)水铝石α-AlO(OH)和(b)纤铁矿γ-FeO(OH)的结构正视图[99]
Fig. 35 Elevations of (a) the α-AlO(OH), diaspore, (b) the γ-FeO(OH), lepidocrocite, structures[99]
图36 水铝石α-AlO(OH)结构中O和OH基团的空间位置关系[99]
Fig. 36 The spatial correlation between O and OH group in the structure of α-AlO(OH), diaspore[99]
图37 水的还原电位随pH的变化:两条斜线分别为两个电对(O2/H2O和H+/H2)的电位,是热力学上水稳定的上限和下限[100]
Fig. 37 The variation of the reduction potentials of water with pH. The sloping lines defi ning the upper and lower limits of thermodynamic water stability are the potentials for the O2/H2O and H+/H2 couples, respectively. The central zone represents the stability range of natural waters[100]
图38 铬体系的pH-电位图[101]
Fig. 38 The variation of the reduction potentials of Cr-water system with pH[101]
图39 As和I体系的E-pH图[102]
Fig. 39 The variation of the reduction potentials of As-water system with pH[102]
图40 热力学循环。该循环示出配体L的存在如何改变Mv+/M(v-1)+的标准电极电位[103]
Fig. 40 Thermodynamic cycle showing how the standard potential of the couple Mv+/M(v-1)+ is altered by the presence of a ligand L[103]
图41 水合电子的结构示意图[106]
Fig. 41 Diagrammatic representation of a hydrated electron[106]
表8 反应[M(H2O)n]m+ + L ↔ [M(L)(H2O)n-1]m+ + H2O的形成常数[107]
Table 8 Formation constants for the reaction [M(H2O)n]m+ + L ↔ [M(L)(H2O)n-1]m+ + H2O[107]
表9 Ni(Ⅱ)氨配合物[Ni(NH3)n(H2O ) 6 - n]2+的形成常数[108]
Table 9 Formation constants of Ni(Ⅱ) ammines, [Ni(NH3)n(H2O ) 6 - n]2+[108]
图42 水合配合物中H2O分子交换的特征寿命[109]
Fig. 42 Characteristic lifetimes for exchange of water molecules in aqua complexes[109]
图43 在不同溶剂中合成[RhX2(py)4 ] + [ 113 ]
Fig. 43 Synthesis of [RhX2(py)4]+ in various solvents[113]
图44 水-乙醇溶剂中电子转移催化合成trans-[RhCl2(py)4]+的可能机理[113]
Fig. 44 The possible mechanism for the catalytic synthesis of trans-[RhCl2(py)4]+ via electron transfer in water-ethanol solution[113]
[26]
Gao S Y, Song P S, Xia S P, Zheng M P. Salt Lake Chemistry:A New Type of Boron-Lithium Salt Lake, Beijing: Science Press,2007. 50-52.
(高世扬, 宋彭生, 夏树屏, 郑绵平. 盐湖化学:新类型硼锂盐湖, 北京: 科学出版社, 2007. 50-52. ).
[27]
Hong G Y. Inorganic Solid Chemistry. Beijing: Science Press, 2002. 78-91.
(洪广言. 无机固体化学. 北京: 科学出版社, 2002. 78-91.)
[28]
Xu R R, Pang W Q, Huo Q S, Ed. Inorganic Synthesis and Preparative Chemistry. The Second Edition. Beijing: Higher Education Press, 2009. 290-328; 371-430; 482-552.
(徐如人, 庞文琴, 霍启升, 第二版.主编. 无机合成与制备化学. 北京: 高等教育出版社, 2009. 290-328; 371-430; 482-552.).
[29]
Gao S Y, Song P S, Xia S P, Zheng M P. Salt Lake Chemistry:A New Type of Boron-Lithium Salt Lake, Beijing: Science Press,2007.
(高世扬, 宋彭生, 夏树屏, 郑绵平. 盐湖化学:新类型硼锂盐湖, 北京: 科学出版社, 2007.).
[30]
Deng T L, Wang S Q, Guo Y F. Metastable Phase Equilibrium and Phase Diagram of Salt Lake Brine System in Qaidam Basin. Beijing: Science Press, 2017.
(邓天龙, 王士强, 郭亚飞. 柴达木盆地盐湖卤水体系介稳相平衡与相图. 北京: 科学出版社, 2017.).
[31]
Deng T L, Wang S Q, Guo Y F. Metastable Phase Equilibrium and Phase Diagram of Salt Lake Brine System in Qaidam Basin. Beijing: Science Press, 2017.48.
(邓天龙, 王士强, 郭亚飞. 柴达木盆地盐湖卤水体系介稳相平衡与相图. 北京: 科学出版社, 2017. 48).
[32]
Gao S Y, Song P S, Xia S P, Zheng M P. Salt Lake Chemistry:New Type of Boron-Lithium Salt Lake, Beijing: Science Press,2007. 98.
(高世扬, 宋彭生, 夏树屏, 郑绵平. 盐湖化学:新类型硼锂盐湖, 北京: 科学出版社, 2007. 98.).
[33]
Deng T L, Wang S Q, Guo Y F. Metastable Phase Equilibrium and Phase Diagram of Salt Lake Brine System in Qaidam Basin. Beijing: Science Press, 2017. 95-102.
(邓天龙, 王士强, 郭亚飞. 柴达木盆地盐湖卤水体系介稳相平衡与相图. 北京: 科学出版社, 2017. 95-102.).
[34]
Jin Z M, Zhou H N, Wang L S. Chem. Res. Chin. Univ., 2001, 22(4): 634.
(金作美, 周惠南, 王励生. 高等学校化学学报, 2001, 22(4): 634.).
[35]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Oxford University Press,2014. 128.
[36]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975, 319.
[1]
Xu R R. Natl. Sci. Rev., 2018, 5(1): 1.

doi: 10.1093/nsr/nwx155     URL    
[2]
Xu R R, Yu J H, Yan W F. Progress in Chemistry, 2020, 3:1017.
(徐如人, 于吉红, 闫文付. 化学进展, 2020, 3:1017.).
[3]
Li W K, Zhou G D, Mak T C W. Advanced Structural Inorganic Chemistry. Oxford: Oxford University Press, 2008, 623.
[4]
Ohtaki H, Radnai T. Chem. Rev., 1993, 93(3): 1157.

doi: 10.1021/cr00019a014     URL    
[5]
Magini M, Licheri G, Paschina G, Piccaluga G, Pinna G. X-Ray Diffraction of Ions in Aqueous Solutions:Hydration and Complex Formation. New York: CRC Press, 2018.
[6]
Fang C H, Ma P H, Fang Y, Yang B, Lei Y C. Acta Chimica Sin., 2000, 58(11): 1393.
(房春晖, 马培华, 房艳, 杨波, 雷亚川. 化学学报, 2000, 58(11): 1393.).
[7]
Cao L D, Fang Y, Fang C H. Chemical Research in Chinese Universities, 2011, 27: 490.
[8]
Zhou Y Q, Soga Y, Yamaguchi T, Fang Y, Fang C H. Acta Physico-Chimica Sinica, 2018, 34(5):483.
(周永全, 曾我良枝, 山口敏男, 房艳, 房春晖. 物理化学学报, 2018, 34(5): 483.).
[9]
Zhou Y Q, Fang C H, Fang Y, Zhu F Y, Liu H Y, Ge H W. International Journal of Hydrogen Energy, 2016, 41: 22668.

doi: 10.1016/j.ijhydene.2016.10.057     URL    
[10]
Zhou Y Q, Yoshida K, Yamaguchi T, Liu H Y, Fang C H, Fang Y. J. Phys. Chem. A, 2017, 121(47): 9146.

doi: 10.1021/acs.jpca.7b09703     URL    
[11]
Zhu F Y, Fang C H, Fang Y, Zhou Y Q, Ge H W, Liu H Y. J. Mol. Struct., 2015, 1083: 471.

doi: 10.1016/j.molstruc.2014.10.041     URL    
[12]
Zhou Y Q, Fang C H, Fang Y, Zhu F Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2011, 83(1): 82.

doi: 10.1016/j.saa.2011.07.081     URL    
[13]
Zhou Y Q, Fang C H, Fang Y, Zhu F Y, Cao L D. Asian J. Chem., 2012, 24: 29.
[14]
Dong J R, Lu Y X, Xu Y, Chen F F, Yang J M, Chen Y A, Feng J D. Nature, 2021, 596(7871): 244.

doi: 10.1038/s41586-021-03715-9     URL    
[15]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 101.
[37]
Atkins P, Overton T, Rourke J, Weller M, Armstrong F, Hagerman M. Inorganic Chemistry. Fifth Edition. New York: Oxford University Press, 2010. 112.
[38]
Cotton F A, Wilkinson G. Advanced Inorganic Chemistry. Fifth Edition. New York: John Wiley & Sons, 1988. 100.
[39]
Zundel G, Metzger H. Z. Phys. Chem., 1968, 58: 225.

doi: 10.1524/zpch.1968.58.5_6.225     URL    
[40]
Zundel G. Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology. In Advances in Chemical Physics, 1999. 1-217. DOI: 10.1002/9780470141700.ch1.
[41]
Wicke E, Eigen M, Ackermann T. Zeitschrift Für Physikalische Chemie, 1954, 1(5/6): 340.

doi: 10.1524/zpch.1954.1.5_6.340     URL    
[42]
Yeh L I, Okumura M, Myers J D, Price J M, Lee Y T. J. Chem. Phys., 1989, 91(12): 7319.

doi: 10.1063/1.457305     URL    
[43]
Okumura M, Yeh L I, Myers J D, Lee Y T. J. Phys. Chem., 1990, 94(9): 3416.

doi: 10.1021/j100372a014     URL    
[44]
Zavitsas A A. J. Phys. Chem. B, 2001, 105(32): 7805.

doi: 10.1021/jp011053l     URL    
[45]
Hulthe G, Stenhagen G, Wennerström O, Ottosson C H. J. Chromatogr. A, 1997, 777(1): 155.

doi: 10.1016/S0021-9673(97)00486-X     URL    
[46]
Iyengar S S, Petersen M K, Day T J F, Burnham C J, Teige V E, Voth G A. J. Chem. Phys., 2005, 123(8): 084309.

doi: 10.1063/1.2007628     URL    
[47]
Markovitch O, Agmon N. J. Phys. Chem. A, 2007, 111: 2253.

pmid: 17388314
[48]
Christe K O, Charpin P, Soulie E, Bougon R, Fawcett J, Russell D R. Inorg. Chem., 1984, 23(23): 3756.

doi: 10.1021/ic00191a019     URL    
[49]
Kearley G J, Pressman H A, Slade R C T. Journal of the Chemical Society, Chemical Communications 1986, 1801.
[50]
Borgias B A, Hardin G G, Raymond K N. Inorg. Chem., 1986, 25(7): 1057.

doi: 10.1021/ic00227a034     URL    
[51]
Henke H, Kuhs W F. Zeitschrift Für Kristallographie Cryst. Mater., 1987, 181(1/4): 113.
[52]
Ardon M, Bino A, Jackson W G. Polyhedron, 1987, 6(2): 181.

doi: 10.1016/S0277-5387(00)80787-1     URL    
[53]
Ardon M, Bino A, Michelsen K. J. Am. Chem. Soc., 1987, 109(7): 1986.

doi: 10.1021/ja00241a014     URL    
[54]
Mootz D. Angew. Chem. Int. Ed. Engl., 1981, 20(9): 791.
[55]
Hefter G T. Polyhedron, 1984, 3(1): 75.

doi: 10.1016/S0277-5387(00)84716-6     URL    
[56]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 122.
[57]
Knight C, Balec R, Kinrade S. Angew. Chem. Int. Ed., 2007, 46(43): 8148.

doi: 10.1002/anie.200702986     URL    
[58]
Dai A B. J. Nanjing Univ. Nat. Sci., 1963(3): 1.
(戴安邦. 南京大学学报(自然科学版), 1963,(3): 1.)
[59]
Dai A B, Chen R S. J. Nanjing Univ. Nat. Sci., 1963,(3): 9.
(戴安邦, 陈荣三. 南京大学学报(自然科学版), 1963(3): 9.)
[60]
Dai A B, Chen R S, Zhu T. J. Nanjing Univ. Nat. Sci., 1963,(3): 20.
(戴安邦, 陈荣三, 朱屯. 南京大学学报(自然科学版), 1963,(3): 20.)
[61]
Iler R K. The Colloid Chemistry of Silica and Silicates. New York: Cornell University Press, 1955. 39.
[62]
Iler R K. The Chemistry of Silica. New York: Wiley-Interscience, 1979, 224.
[63]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 854.
[64]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 853.
[65]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 852-862.
[66]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 857.
[67]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 318.
[68]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014, 131.
[69]
Speight J G. Langes Handbook of Chemistry-Seventeenth Edition. New York: McGraw-Hill Education, 2016. 347.
[70]
Kolthoff I, Sandell E. Textbook of Quantitative Inorganic Analysis. New York: Macmillan, 1952.
[71]
Speight J G. Langes Handbook of Chemistry-Seventeenth Edition. New York: McGraw-Hill Education, 2016. 368.
[72]
Kolthoff I, Sandell E. Textbook of Quantitative Inorganic Analysis. New York: Macmillan, 1952. 155.
[73]
Schubert K, Seitz A. Z. Anorg. Chem., 1948, 256(4): 226.

doi: 10.1002/zaac.19482560403     URL    
[74]
Christensen A N, Broch N C, von Heidenstam O, Nilsson Å. Acta Chem. Scand., 1967, 21: 1046.

doi: 10.3891/acta.chem.scand.21-1046     URL    
[75]
Liu H Y, Fang C H, Fang Y, Zhou Y Q, Zhu F Y, Ge H W, Yang Z X, Tang Y L. Acta Phys. Chimica Sin., 2014, 30(11): 1979. (in Chinese)
Fang C H, Fang Y, Zhou Y Q, Zhu F Y, Ge H W, Yang Z X, Tang Y L. 物理化学学报, 2014, 30(11): 1979.).
[76]
Gao S Y, Song P S, Xia S P, Zheng M P. Salt Lake Chemistry: New Type of Boron-Lithium Salt Lake, Beijing: Science Press,2007. 164
(高世扬, 宋彭生, 夏树屏, 郑绵平. 盐湖化学:新类型硼锂盐湖. 北京: 科学出版社, 2007. 164.).
[77]
Liu H Y, Fang C H, Fang Y, Zhou Y Q, Zhu F Y, Ge H W, Yang Z X, Tang Y L. Acta Phys. -Chim. Sin., 2014, 30: 1979.

doi: 10.3866/PKU.WHXB201409251     URL    
[78]
Iler R K. The chemistry of silica. New York: Wiley-Interscience, 1979. 174.
[79]
Xu R R, Pang W Q, Yu J H, Huo Q S, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore:John Wiley & Sons (Asia),2007. 278.
[80]
Xu R R, Pang W Q, Yu J H, Huo Q S, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore:John Wiley & Sons (Asia),2007. 281.
[81]
Xu R R, Pang W Q, Yu J H, Huo Q S, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore:John Wiley & Sons (Asia),2007. 282.
[82]
Iler R K. The Chemistry of Silica. New York: Wiley-Interscience. 1979. 234.
[83]
Iler R K. The Chemistry of Silica. New York: Wiley-Interscience. 1979. 235.
[84]
Xu R R, Pang W Q, Huo Q S. Molecular Sieves and Porous Materials Chemistry. The Second Edition. Beijing: Science Press,2015.265-266
(徐如人, 庞文琴, 霍启升, 分子筛与多孔材料化学.第二版. 北京: 科学出版社, 2015. 265-266. ).
[85]
McCormick A V, Bell A T, Radke C J. Application of29Si and27Al NMR to Determine the Distribution of Anions in Sodium Silicate and Sodium Alumino-Silicate Solutions, In Studies in Surface Science and Catalysis. Murakami Y, Iijima A, Ward J W, Eds. Elsevier,1986. 28:247-254.
[86]
Cejka J, Corma A, Zones S. Zeolites and Catalysis-Synthesis, Reactions and Applications; Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010. 13-20.
[87]
Xu R R, Pang W Q, Huo Q S. Molecular Sieves and Porous Materials Chemistry. The Second Edition. Beijing: Science Press,2015. 232-325
(徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学.第二版. 北京: 科学出版社, 2015. 232-325.
[88]
Dent Glasser L, Harrey G. MR studies of aluminosilicates in solution In Proceedings of the Sixth International Zeolite Conference. Olson D, Bisio A, Eds. Butterworths, Stoneham, 1984.925-933.
[89]
Zhdanov S P. "Molecular Sieves", Proceedings of the 1st International Zeolite Conference. Barrer R M, Eds, London: Soc. Chem. Ind., 1968. 62.
[90]
Robson H. Verified Syntheses of Zeolitic Materials. Amsterdam: Elsevier, 2001. 1.
[91]
Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Framework Types. 6th Ed. Amsterdam: Elsevier, 2001. 120-121.
[92]
Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Framework Types.6th Ed. Amsterdam: Elsevier, 2001: 194-195.
[93]
Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Framework Types. 6th Ed. Amsterdam: Elsevier, 2001: 140-141.
[94]
Flanigen E M. A Review and New Perspectives in Zeolite Crystallization. In Molecular Sieves. American Chemical Society, 1973. 121:119-139.
[95]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 518.
[96]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 516-536.
[97]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 523.
[98]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 524.
[99]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 526.
[100]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 165.
[101]
Song T Y, Xu J N, Cheng G Z, Wang L. Inorganic Chemistry. The Third Edition. Beijing: Higher Education Press, 2015.337.
(曹惠民,译. 无机化学.第3版. 北京: 化学工业出版社, 2015.337.)
[102]
Song T Y, Xu J N, Cheng G Z, Wang L. Inorganic Chemistry. The Third Edition. Beijing: Higher Education Press, 1988.1460-1474.
(曹惠民,译. 无机化学.第3版. 北京: 化学工业出版社, 1988.1460-1474.)
[103]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 169.
[16]
Gao S Y, Song P S, Xia S P, Zheng M P. Salt Lake Chemistry:New Type of Boron-Lithium Salt Lake, Beijing: Science Press,2007. 81.
(高世扬, 宋彭生, 夏树屏, 郑绵平. 盐湖化学:新类型硼锂盐湖. 北京: 科学出版社, 2007. 81.).
[17]
Gao S Y, Song P S, Xia S P, Zheng M P. Salt Lake Chemistry:New Type of Boron-Lithium Salt Lake, Beijing: Science Press,2007. 82.
(高世扬, 宋彭生, 夏树屏, 郑绵平. 盐湖化学:新类型硼锂盐湖. 北京: 科学出版社, 2007. 82.).
[18]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 553.
[19]
Wells A F. Structural Inorganic Chemistry.4th Edition. London: Oxford University Press, 1975. 554.
[20]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 548-569.
[21]
Wells A F. Structural Inorganic Chemistry. 4th Edition. London: Oxford University Press, 1975. 522.
[22]
(洪显兰, 夏树屏, 高世扬. 应用化学, 1994, 11(03):26.
[23]
Song Y H, Xia S P. J. Salt. Lake Res., 1998, (01): 18.
(宋粤华, 夏树屏. 盐湖研究., 1998, (01): 18.).
[24]
Hong G Y. Inorganic Solid Chemistry. Beijing: Science Press, 2002. 97.
(洪广言. 无机固体化学. 北京: 科学出版社, 2002. 97.).
[25]
Fang Y, Fang C H, Wu G L, Gao S Y. Progress and prospect of physical inorganic chemistry, Xi’an: Shaanxi Science and Technology Press,2000. 44-51
(房艳, 房春晖, 吴国梁, 高世扬. 物理无机化学进展与前瞻. 西安: 陕西科技出版社, 2000. 44-51.).
[104]
Weyl W. Ann. Phys. Chem., 1864, 197(4): 601.

doi: 10.1002/andp.18641970407     URL    
[105]
Schindewolf U. Angew. Chem. Int. Ed. Engl., 1968, 7(3): 190.

doi: 10.1002/anie.196801901     URL    
[106]
Walker D C. Q. Rev., Chem. Soc., 1967, 21(1): 79.

doi: 10.1039/qr9672100079     URL    
[107]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 226.
[108]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 228.
[109]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry. 6th Ed. Great Britain: Oxford University Press, 2014. 551.
[110]
Cao H M, Trans. Handbook of Inorganic Compound Synthesis. Vol. 3. Beijing:Chemical Industry Press,1988.1460-1474.
(曹惠民,译. 无机化合物合成手册.第三卷. 北京: 化学工业出版社, 1988.1460-1474. ).
[111]
Taube H. Science, 1984, 226(4678): 1028.

pmid: 6494920
[112]
Xu Z G. Coordination Chemistry. Beijing: Chemical Industry Press,1987.
(徐志固. 现代配位化学. 北京: 化学工业出版社, 1987.).
[113]
Zhang H, et al. Eds. Coordination Chemistry:Principies and Application. Beijing: Chemical Industry Press, 2009. 396.
(章慧,等编. 配位化学:原理与应用. 北京: 化学工业出版社, 2009. 396.).
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[4] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[5] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[6] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[7] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[8] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[9] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[10] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[11] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[12] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[13] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[14] 李强, 林鲲, 邢献然. 基于全散射技术局域结构确定与凝聚态物质[J]. 化学进展, 2020, 32(8): 1219-1230.
[15] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
阅读次数
全文


摘要

凝聚液态水溶液中的化学反应