English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 227-236 DOI: 10.7536/PC210443 前一篇   

• 综述 •

致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究

朱本占1,2,*(), 张静1,2, 唐苗1,2, 黄春华1,3, 邵杰1,2,*()   

  1. 1 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
    2 中国科学院大学 北京 100049
  • 收稿日期:2021-04-25 修回日期:2021-06-26 出版日期:2022-01-20 发布日期:2021-07-29
  • 通讯作者: 朱本占, 邵杰
  • 基金资助:
    中国科学院战略性先导科技专项项目(XDB14030100); 中国科学院基础前沿科学研究计划从“0”到“1”原始创新项目(ZDBS-LY-SLH027); 国家自然科学基金项目(21976200); 国家自然科学基金项目(21207150); 国家自然科学基金项目(21836005); 国家自然科学基金项目(21621064); 国家自然科学基金项目(21321004); 中科院生态环境研究中心青年科学家基金(RCEES-QN-20130052F)

Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts

Benzhan Zhu1,2(), Jing Zhang1,2, Miao Tang1,2, Chunhua Huang1,3, Jie Shao1,2()   

  1. 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085,China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-04-25 Revised:2021-06-26 Online:2022-01-20 Published:2021-07-29
  • Contact: Benzhan Zhu, Jie Shao
  • Supported by:
    Strategic Priority Research Program Chinese Academy Sciences(XDB14030100); from "0" to "1" Original Innovation Project of the Basic Frontier Science Research Program of the Chinese Academy of Sciences(ZDBS-LY-SLH027); Natianal Natural Science Foundation of China(21976200); Natianal Natural Science Foundation of China(21207150); Natianal Natural Science Foundation of China(21836005); Natianal Natural Science Foundation of China(21621064); Natianal Natural Science Foundation of China(21321004); Young Scientist Foundation of Research Center for Eco-Environmental Sciences(RCEES-QN-20130052F)

卤代醌是一类卤代芳烃类环境污染物的致癌中间体,也是在饮用水中新发现的氯化消毒副产物。我们最近发现卤代醌和 H2O2 或有机氢过氧化物体系可以不依赖过渡金属离子,而产生高活性的羟基/烷氧自由基和醌氧/醌碳自由基。目前尚不清楚这些卤代醌类致癌物和氢过氧化物共存能否诱导 DNA 产生氧化损伤和修饰,以及其潜在的分子机制是什么。我们的研究发现 DNA 在四氯-1,4-苯醌/H2O2体系中可被氧化产生 8-氧脱氧鸟苷、DNA 链断裂和三种甲基氧化产物,这些反应不依赖过渡金属离子,且由于卤代醌与 DNA 的嵌入作用而导致其氧化作用增强。其他卤代醌也观察到了类似的现象,而且通常比经典的 Fenton 体系更有效。我们进一步将研究从纯化的 DNA 扩展到了活细胞的基因组 DNA。同时还发现卤代醌和有机氢过氧化物(如叔丁基过氧化氢或在正常生理条件下产生的 13S-过氧羟基-9Z,11E-十八碳二烯酸(13-HPODE))共存时,可通过独特的醌氧自由基介导机制诱导 DNA 氧化生成致突变性更强的咪唑啉酮类产物 dIz。这些发现为解释普遍存在的卤代醌类致癌中间体和消毒副产物的潜在基因毒性、致突变性和致癌性提供了新思路。

Halobenzoquinones (HBQs) are a class of toxic intermediates of the haloaromatic persistent organic pollutants and newly identified chlorination disinfection byproducts in drinking water and swimming pool water. The highly reactive hydroxyl/alkoxyl radicals and quinone enoxy/ketoxy radicals were found to be produced by HBQs with H2O2 or organic hydroperoxides metal-independently. However, it remains unknown whether HBQs and hydroperoxides can induce DNA damage, and if so, what are the underlying molecular mechanisms. We found that 8-oxodeoxyguanosine (8-oxodG), DNA strand breaks and three methyl oxidation products could be generated from DNA oxidation by tetrachloro-1,4-benzoquinone (TCBQ) and H2O2 via an intercalation-enhanced oxidation mechanism. Analogous effects were observed with other HBQs, which are generally more effective than the classic iron-mediated Fenton system. Further investigations were extended from isolated DNA to genomic DNA in living cells. Potent oxidation of DNA to the more mutagenic imidazolone dIz was also found to be induced by HBQs and organic hydroperoxides such as the physiologically-relevant hydroperoxide 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13-HPODE) via a unique quinone-enoxy radical-mediated mechanism. These findings should provide new perspectives to explain the potential genotoxicity, mutagenesis, and carcinogenicity for the ubiquitously-present haloaromatic persistent organic pollutants.

Contents

1 Introduction

2 Potent oxidative DNA damage by HBQs and H2O2 via an intercalation-enhanced oxidation mechanism

3 Detection of HQ-induced DNA damage by photoelectrochemical DNA sensor

4 Genotoxicity and mutagenesis induced by TCHQ in mammalian cells

5 Potent methyl oxidation of 5-methyl-2'-deoxycytidine (5mCyt) by HBQs and H2O2

6 Genome-wide DNA methylation alterations induced by HBQs and other redox-active quinones at cellular level

7 Potent oxidation of DNA by HBQs/organic hydroperoxides to the more mutagenic imidazolone dIz via the reactive haloquinone-enoxy radicals

8 Conclusion

()
图1 TCBQ 和 TCHQ 是 PCP 主要的两种具有遗传毒性和致癌性的醌类代谢产物
Fig.1 TCBQ and TCHQ are two major genotoxic and carcinogenic quinoid metabolites of PCP
图2 卤代醌可通过不依赖过渡金属离子的过程经过亲核取代及均裂分解的反应机制促进氢过氧化物的分解,产生烷氧/羟基自由基、醌碳自由基及醌氧自由基
Fig. 2 Mechanism of enhancement by HBQs of the decomposition of hydroperoxides and formation of alkoxyl/hydroxyl radicals and quinone ketoxy/enoxy radicals metal-independently via nucleophilic substitution followed by homolytical decompositionreaction.
图3 本文提到的卤代醌的化学结构
Fig. 3 The chemical structures of HQs in this study
图4 TCBQ/H2O2 体系通过不依赖金属离子的过程产生 5 mC 甲基氧化产物的可能机理[63]:首先,TCBQ/H2O2体系产生的·OH可夺取 5mC的甲基上的氢生成相应的自由基,其与 O2结合后生成对应的过氧自由基中间体;这种过氧自由基很不稳定,转化成氢过氧化物 5HpmC,其与 TCBQ发生亲核取代及均裂反应生成5-CH2O·;该自由基进一步歧化生成5HmC和 5fC
Fig. 4 Proposed mechanism for the formation of 5mCyt oxidation products by TCBQ and H2O2 via a metal-independent pathway (modified according to Ref 63). First, ·OH produced by TCBQ/H2O2 may abstract hydrogen atom from the methyl group of 5mC, leading to the formation of 5-(2'-deoxycytidylyl)methyl radical, which then combines with O2 to form its corresponding peroxyl radical. The unstable peroxyl radical can transform into 5HpmC. 5HmC and 5fC were produced via dismutation of 5-CH2O· formed through a nucleophilic substitution followed homolytical decomposition reaction.
图5 TCBQ 和t-BuOOH 不依赖过渡金属离子通过醌氧自由基中间体生成 Gua 氧化产物的机制[79]:首先,TCBQ/t-BuOOH体系产生的醌氧自由基可夺取Gua上的氢生成Gua·+,其在生理条件下生成Gua(-H)·。该自由基与O2结合后生成氢过氧化物。该过氧化物经过一系列重排生成Iz。通过类似机理,开始生成的8-oxoG通过单电子氧化和重排反应也可以生成Iz,Iz不稳定进一步水解生成Oz
Fig. 5 Proposed mechanism for the formation of Gua oxidation products by TCBQ and t-BuOOH via quinone enoxy radical intermediates in a metal-independent pathway (modified according to Ref 79). First, the quinone enoxy radical produced by TCBQ/t-BuOOH may abstract one electron from Gua to generate Gua·+, which deprotonates at physiological pH to produce Gua(-H)·. Gua(-H)· combines with O2 and then transforms into the corresponding hydroperoxide 5-HOO-Gua(-H). The decarboxylation of 5-HOO-Gua(-H) and further rearrangement lead to the formation of the imidazolone lesion. In a similar way, the initially produced 8-oxoG would result in the formation of Iz after one-electron oxidation and rearrangement. The imidazolone lesion could further hydrolyze to form the oxazolone (Oz) lesion.
[1]
Guyton K Z, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K,. Lancet Oncol., 2016,17(12): 1637.

doi: 10.1016/S1470-2045(16)30513-7     URL    
[2]
Bolton J L, Trush M A, Penning T M, Dryhurst G, Monks T J. Chem. Res. Toxicol., 2000,13(3): 135.

pmid: 10725110
[3]
Song Y, Wagner B A, Witmer J R, Lehmler H J, Buettner G R. PNAS, 2009,106(24): 9725.

doi: 10.1073/pnas.0810352106     URL    
[4]
Gupta S S, Stadler M, Noser C A, Ghosh A, Steinhoff B, Lenoir D, Horwitz C P, Schramm K W, Collins T J. Science, 2002,296(5566): 326.

doi: 10.1126/science.1069297     URL    
[5]
Meunier B. Science, 2002,296(5566): 270.

doi: 10.1126/science.1070976     URL    
[6]
Qin F, Zhao Y Y, Zhao Y L, Boyd J, Zhou W J, Li X F. Angewandte Chemie Int. Ed., 2010,49(4): 790.

doi: 10.1002/anie.200904934     URL    
[7]
Sorokin A, Meunier B, SÉris J L. Science, 1995,268(5214): 1163.

pmid: 17840631
[8]
Zhao Y L, Qin F, Boyd J M, Anichina J, Li X F. Anal. Chem., 2010,82(11): 4599.

doi: 10.1021/ac100708u     URL    
[9]
Zhu B Z, Shan G Q. Chem. Res. Toxicol., 2009,22(6): 969.

doi: 10.1021/tx900030v     URL    
[10]
Mao L, Liu Y X, Huang C H, Gao H Y, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2015,49(13): 7940.

doi: 10.1021/acs.est.5b01227     pmid: 26009932
[11]
Gao H Y, Mao L, Shao B, Huang C H, Zhu B Z. Sci. Rep., 2016,6(1): 33159.

doi: 10.1038/srep33159     URL    
[12]
Gao H Y, Mao L, Li F, Xie L N, Huang C H, Shao J, Shao B, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2017,51(5): 2934.

doi: 10.1021/acs.est.6b04664     URL    
[13]
Zhu B Z, Shen C, Gao H Y, Zhu L Y, Shao J, Mao L. J. Environ. Sci., 2017,62: 68.

doi: 10.1016/j.jes.2017.06.035     URL    
[14]
Zhu B Z, Ren F R, Mao L, Gao H Y, Liu Q L, Liu P. Chin. Sci. Bull., 2015,60(20): 1855.

doi: 10.1360/N972015-00286     URL    
( 朱本占, 任福荣, 毛莉, 高慧颖, 刘庆林, 刘蒲. 科学通报, 2015,60(20): 1855.)
[15]
Zhu B Z, Shao B, Mao L, Gao H Y. Acta Chimica Sin., 2016,74(7): 557.
( 朱本占, 邵波, 毛莉, 高慧颖. 化学学报, 2016,74(7): 557. (in Chinese)

doi: 10.6023/A16040178    
[16]
Zhu B Z, Xie L N, Shen C, Gao H Y, Zhu L Y, Mao L. Progress in Chemstry, 2017,29(09): 930.
( 朱本占, 谢琳娜, 沈忱, 高慧颖, 朱丽雅, 毛莉. 化学进展, 2017,29(09): 930.)
[17]
Mao L, Gao H Y, Huang C H, Qin L, Huang R, Shao B, Shao J, Zhu B Z. Chem. Eng. J., 2020,394: 125023.

doi: 10.1016/j.cej.2020.125023     URL    
[18]
Chang W C, Jeng J H, Shieh C C, Tsai Y C, Ho Y S, Guo H R, Liu H I, Lee C C, Ho S Y, Wang Y J. Mol. Carcinog., 2003,36(4): 161.

doi: 10.1002/mc.10113     URL    
[19]
Wang Y J, Yang M C, Pan M H. Food Chem. Toxicol., 2008,46(12): 3739.

doi: 10.1016/j.fct.2008.09.064     URL    
[20]
Lin Y P, Zhu B Z, Yang M C, Frei B, Pan M H, Lin J K, Wang Y J. Mol. Carcinog., 2004,40(1): 24.

doi: 10.1002/mc.v40:1     URL    
[21]
Chen H M, Zhu B Z, Chen R J, Wang B J, Wang Y J, PLoS One, 2014,9(2): 89483.
[22]
Witte I, Juhl U, Butte W. Mutat. Res., 1985,145(1/2):71.
[23]
Dahlhaus M, Almstadt E, Henschke P, Lüttgert S, Appel K E. Arch. Toxicol., 1996,70(7): 457.

pmid: 8740541
[24]
Ehrlich W. Mutat. Res. Lett., 1990,244(4): 299.

doi: 10.1016/0165-7992(90)90076-V     URL    
[25]
Dahlhaus M, Almstadt E, Appel K E. Toxicol. Lett., 1994,74(3): 265.

pmid: 7871550
[26]
Wagner J R, Cadet J. Acc. Chem. Res., 2010,43(4): 564.

doi: 10.1021/ar9002637     URL    
[27]
Xu G Z, Chance M R. Chem. Rev., 2007,107(8): 3514.

doi: 10.1021/cr0682047     URL    
[28]
Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. Oxford University Press, 2015.
[29]
Huang C H, Ren F R, Shan G Q, Qin H, Mao L, Zhu B Z. Chem. Res. Toxicol., 2015,28(5): 831.

doi: 10.1021/tx500486z     URL    
[30]
Zhu B Z, Kalyanaraman B, Jiang G B. Proc. Natl. Acad. Sci. U. S. A., 2007,104(45):17575.

doi: 10.1073/pnas.0704030104     URL    
[31]
Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000,270(3): 942.

doi: 10.1006/bbrc.2000.2539     URL    
[32]
Zhu B Z, Mao L, Huang C H, Qin H, Fan R M, Kalyanaraman B, Zhu J G. Proc. Natl. Acad. Sci. U. S. A., 2012,109(40): 16046.

doi: 10.1073/pnas.1204479109     URL    
[33]
Zhu B Z, Shan G Q, Huang C H, Kalyanaraman B, Mao L, Du Y G. Proc. Natl. Acad. Sci. U. S. A., 2009,106(28): 11466.

doi: 10.1073/pnas.0900065106     URL    
[34]
Zhu B Z, Zhao H T, Kalyanaraman B, Frei B. Free. Radic. Biol. Med., 2002,32(5): 465.

doi: 10.1016/S0891-5849(01)00824-3     URL    
[35]
Zhu B Z, Zhao H T, Kalyanaraman B, Liu J, Shan G Q, Du Y G, Frei B. Proc. Natl. Acad. Sci. U. S. A., 2007,104(10): 3698.

doi: 10.1073/pnas.0605527104     URL    
[36]
Huang C H, Shan G Q, Mao L, Kalyanaraman B, Qin H, Ren F R, Zhu B Z. Chem. Commun., 2013,49(57): 6436.

doi: 10.1039/c3cc42732c     URL    
[37]
Yin R C, Zhang D P, Song Y L, Zhu B Z, Wang H L. Sci. Rep., 2013,3(1): 1.
[38]
Lin P H, La D K, Upton P B, Swenberg J A. Carcinogenesis, 2002,23(2): 365.

doi: 10.1093/carcin/23.2.365     URL    
[39]
Umemura T, Kai S, Hasegawa R, Sai K, Kurokawa Y, Williams G M. Carcinogenesis, 1999,20(6):1115.

pmid: 10357797
[40]
Pfeifer G P. Technologies for detection of DNA damage and mutations. Springer Science & Business Media, 2013.
[41]
Jia S P, Liang M M, Guo L H. J. Phys. Chem. B, 2008,112(14): 4461.

doi: 10.1021/jp711528z     URL    
[42]
Liang M M, Guo L H. Environ. Sci. Technol., 2007,41(2): 658.

doi: 10.1021/es0617688     URL    
[43]
Liang M M, Jia S P, Zhu S C, Guo L H. Environ. Sci. Technol., 2008,42(2): 635.

doi: 10.1021/es071633h     URL    
[44]
Jia S P, Zhu B Z, Guo L H. Anal. Bioanal. Chem., 2010,397(6): 2395.

doi: 10.1007/s00216-010-3796-3     URL    
[45]
Ito S, D’Alessio A C, Taranova O V, Hong K, Sowers L C, Zhang Y. Nature, 2010,466(7310): 1129.

doi: 10.1038/nature09303     URL    
[46]
Wang J, Yu S Y, Jiao S H, Lv X, Ma M, Zhu B Z, Du Y G. Fundam. Mol. Mech. Mutagen., 2012,729(1/2): 16.

doi: 10.1016/j.mrfmmm.2011.08.010     URL    
[47]
Cedar H. Cell, 1988,53(1): 3.

pmid: 3280142
[48]
Doerfler W. Biol. Chem. Hoppe Seyler, 1991,372(8):557.

doi: 10.1515/bchm3.1991.372.2.557     URL    
[49]
Nabel C S, Kohli R M. Science, 2011,333(6047): 1229.

doi: 10.1126/science.1211917     URL    
[50]
Ito S, Shen L, Dai Q, Wu S C, Collins L B, Swenberg J A, He C, Zhang Y. Science, 2011,333(6047): 1300.

doi: 10.1126/science.1210597     URL    
[51]
Tahiliani M, Koh K P, Shen Y H, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A. Science, 2009,324(5929): 930.

doi: 10.1126/science.1170116     pmid: 19372391
[52]
He Y F, Li B Z, Li Z, Liu P, Wang Y, Tang Q Y, Ding J P, Jia Y Y, Chen Z C, Li L, Sun Y, Li X X, Dai Q, Song C X, Zhang K L, He C, Xu G L. Science, 2011,333(6047): 1303.

doi: 10.1126/science.1210944     URL    
[53]
Münzel M, Globisch D, Carell T. Angew. Chem. Int. Ed., 2011,50(29): 6460.

doi: 10.1002/anie.v50.29     URL    
[54]
Pfaffeneder T, Hackner B, Truß M, Münzel M, Müller M, Deiml C A, Hagemeier C, Carell T. Angew. Chem. Int. Ed., 2011,50(31): 7008.

doi: 10.1002/anie.v50.31     URL    
[55]
Haffner M C, Chaux A, Meeker A K, Esopi D M, Gerber J, Pellakuru L G, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson W G, Netto G J, de Marzo A M, Yegnasubramanian S. Oncotarget, 2011,2(8): 627.

doi: 10.18632/oncotarget.v2i8     URL    
[56]
Jin S G, Jiang Y, Qiu R X, Rauch T A, Wang Y S, Schackert G, Krex D, Lu Q, Pfeifer G P. Cancer Res., 2011,71(24): 7360.

doi: 10.1158/0008-5472.CAN-11-2023     URL    
[57]
Li W W, Liu M. J. Nucleic Acids, 2011,2011: 870726.
[58]
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S H, Ito S, Yang C, Wang P, Xiao M T, Liu L X, Jiang W Q, Liu J, Zhang J Y, Wang B, Frye S, Zhang Y, Xu Y H, Xiong Y. Cancer Cell, 2011,19(1): 17.

doi: 10.1016/j.ccr.2010.12.014     URL    
[59]
Cao H C, Wang Y S. Nucleic Acids Res., 2007,35(14): 4833.

doi: 10.1093/nar/gkm497     URL    
[60]
Castro G D, Díaz GÓmez M I, Castro J. Chem. Biol. Interact., 1996,99(1/3): 289.

doi: 10.1016/0009-2797(95)03680-6     URL    
[61]
Castro G D, Stamato C J, Castro J A. Free. Radic. Biol. Med., 1994,17(5): 419.

doi: 10.1016/0891-5849(94)90168-6     URL    
[62]
Privat E, Sowers L C. Chem. Res. Toxicol., 1996,9(4): 745.

pmid: 8831819
[63]
Shao J, Huang C H, Kalyanaraman B, Zhu B Z. Free. Radic. Biol. Med., 2013,60: 177.

doi: 10.1016/j.freeradbiomed.2013.01.010     URL    
[64]
Yin R C, Mao S Q, Zhao B L, Chong Z C, Yang Y, Zhao C, Zhang D P, Huang H, Gao J, Li Z, Jiao Y, Li C P, Liu S Q, Wu D N, Gu W K, Yang Y G, Xu G L, Wang H L. J. Am. Chem. Soc., 2013,135(28): 10396.

doi: 10.1021/ja4028346     URL    
[65]
Ho S M, Tang W Y, Belmonte de Frausto J, Prins G S. Cancer Res., 2006,66(11): 5624.

doi: 10.1158/0008-5472.CAN-06-0516     URL    
[66]
Li S F, Hansman R, Newbold R, Davis B, McLachlan J A, Barrett J C. Mol. Carcinog., 2003,38(2): 78.

doi: 10.1002/(ISSN)1098-2744     URL    
[67]
Skinner M K, Manikkam M, Guerrero-Bosagna C. Trends Endocrinol. Metab., 2010,21(4): 214.

doi: 10.1016/j.tem.2009.12.007     URL    
[68]
Baccarelli A, Bollati V. Curr. Opin. Pediatr., 2009,21(2): 243.

doi: 10.1097/mop.0b013e32832925cc     pmid: 19663042
[69]
Breuer W, Epsztejn S, Ioav Cabantchik Z. FEBS Lett., 1996,382(3): 304.

pmid: 8605990
[70]
Kakhlon O, Cabantchik Z I. Free. Radic. Biol. Med., 2002,33(8): 1037.

doi: 10.1016/S0891-5849(02)01006-7     URL    
[71]
Deb S, Johnson E E, Robalinho-Teixeira R L, Wessling-Resnick M. BioMetals, 2009,22(5): 855.

doi: 10.1007/s10534-009-9214-7     URL    
[72]
Wise D R, Ward P S, Shay J E S, Cross J R, Gruber J J, Sachdeva U M, Platt J M, DeMatteo R G, Simon M C, Thompson C B. Proc. Natl. Acad. Sci. U. S. A., 2011,108(49): 19611.

doi: 10.1073/pnas.1117773108     URL    
[73]
Zhao B L, Yang Y, Wang X L, Chong Z C, Yin R C, Song S H, Zhao C, Li C P, Huang H, Sun B F, Wu D N, Jin K X, Song M Y, Zhu B Z, Jiang G B, Rendtlew Danielsen J M, Xu G L, Yang Y G, Wang H L. Nucleic Acids Res., 2014,42(3): 1593.

doi: 10.1093/nar/gkt1090     URL    
[74]
Reigner B G, Rigod J F, Tozer T N. Pharm. Res., 1992,9(8): 1053.

doi: 10.1023/A:1015810629245     URL    
[75]
Feinberg A P, Vogelstein B. Nature, 1983,301(5895): 89.

doi: 10.1038/301089a0     URL    
[76]
Zhou H, Chen W D, Qin X S, Lee K, Liu L L, Markowitz S D, Gerson S L. Oncogene, 2001,20(42): 6009.

pmid: 11593408
[77]
Almeida A, Kokalj-Vokac N, Lefrancois D, Viegas-Pequignot E, Jeanpierre M, Dutrillaux B, Malfoy B. Hum. Genet., 1993,91(6): 538.

pmid: 8340107
[78]
Marnett L J. Carcinogenesis, 2000,21(3): 361.

pmid: 10688856
[79]
Shao J, Huang C H, Shao B, Qin L, Xu D, Li F, Qu N, Xie L N, Kalyanaraman B, Zhu B Z. Environ. Sci. Technol., 2020,54(10): 6244.

doi: 10.1021/acs.est.9b07886     pmid: 32323976
[80]
Cadet J, Douki T, Ravanat J L. Acc. Chem. Res., 2008,41(8): 1075.

doi: 10.1021/ar700245e     URL    
[81]
Cadet J, Berger M, Buchko G W, Joshi P C, Raoul S, Ravanat J L. J. Am. Chem. Soc., 1994,116(16): 7403.

doi: 10.1021/ja00095a052     URL    
[82]
Henderson P T, Delaney J C, Gu F, Tannenbaum S R, Essigmann J M. Biochemistry, 2002,41(3): 914.

pmid: 11790114
[83]
Neeley W L, Delaney J C, Henderson P T, Essigmann J M. J. Biol. Chem., 2004,279(42): 43568.

doi: 10.1074/jbc.M407117200     URL    
[84]
Qin H, Huang C H, Mao L, Xia H Y, Kalyanaraman B, Shao J, Shan G Q, Zhu B Z. Free. Radic. Biol. Med., 2013,63: 459.

doi: 10.1016/j.freeradbiomed.2013.05.008     URL    
[1] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[4] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[5] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[6] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[7] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[8] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[9] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[10] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[11] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[12] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[13] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[14] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[15] 黄依铃, 魏文廷*. 水介质中的有机自由基反应[J]. 化学进展, 2018, 30(12): 1819-1826.