English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1819-1826 DOI: 10.7536/PC180225 前一篇   后一篇

• 综述 •

水介质中的有机自由基反应

黄依铃, 魏文廷*   

  1. 宁波大学材料科学与化学工程学院 宁波 315211
  • 收稿日期:2018-02-22 修回日期:2018-08-01 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 魏文廷 E-mail:weiwenting@nbu.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(No.LQ18B020002)和宁波大学王宽诚幸福基金资助

Organic Radical Reactions in Water Medium

Yiling Huang, Wenting Wei*   

  1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
  • Received:2018-02-22 Revised:2018-08-01 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhejiang Province(No. LQ18B020002) and the K. C. Wong Magna Fund in Ningbo University.
化学反应溶剂的绿色化是绿色化学发展的必然趋势,利用储量丰富、廉价易得、无毒性、无污染的水替代传统有机溶剂作为反应介质是化学家们追求的目标。自由基反应由于反应活性高、反应条件温和,逐渐成为有机合成的一种重要策略。本文依据所构建化学键类型的不同,对近5年来水介质中的有机自由基反应研究进展进行了综述。
The greenization of chemical reaction solvent is an inevitable trend of green chemistry in the future. And it is the goal of chemists to replace the traditional organic solvents with water which is abundant, cheap, non-toxic and pollution-free. Radical reaction has gradually become an important strategy for organic synthesis due to its high activity and mild reaction conditions. This review summarizes the advancements of organic radical reaction in water medium in recent five years on the basis of different chemical bonds.
Contents
1 Introduction
2 The construction of C-C bonds
3 The construction of C-N bonds
4 The construction of C-O bonds
5 The construction of C-S bonds
6 Conclusion

中图分类号: 

()
[1] Andrade C K Z, Alves L M. Curr. Org. Chem., 2005, 9:195.
[2] Simon M O, Li C J. Chem. Soc. Rev., 2012, 41:1415.
[3] Sheldon R A. Green Chem., 2005, 7:267.
[4] 李正凯(Li Z K), 吴之清(Wu Z Q), 邓杭(Deng H), 周向葛(Zhou X G). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33:760.
[5] Lipshutz B H, Gallou F, Handa S. ACS Sustain. Chem. Eng., 2016, 4:5838.
[6] Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem., 2013, 11:2943.
[7] 宋河远(Song H Y), 康美荣(Kang M R), 靳荣华(Jin R H), 金福祥(Jin F X), 陈静(Chen J). 化学进展(Progress in Chemistry), 2016, 28(9):1313.
[8] Wang X S, Sheng J, Lu L, Yang K, Li Y L. ACS Comb. Sci., 2011, 13:196.
[9] Leitner W. Acc. Chem. Res., 2002, 35:746.
[10] Feng X J, Yan M, Zhang T, Liu Y, Bao M. Green Chem., 2010, 12:1758.
[11] Du Z, Zhou W, Bai L, Wang F, Wang J X. Synlett, 2011, 369.
[12] Chen J, Spear S K, Huddleston J G. Green Chem., 2005, 7:64.
[13] Wang F, Chen C, Deng G, Xi C J. J. Org. Chem., 2012, 77:4148.
[14] Zard S Z. Chem. Soc. Rev., 2008, 37:1603.
[15] Staveness D, Bosque I, Stephenson C R J. Acc. Chem. Res., 2016, 49:2295.
[16] Deng G B, Zhang J L, Liu Y Y, Liu B, Yang X H, Li J H. Chem. Commun., 2015, 51:1886.
[17] Kilpatrick B, Heller M, Arns S. Chem. Commun., 2013, 49:514.
[18] Mao S, Gao Y R, Zhu X Q, Guo D D, Wang Y Q. Org. Lett., 2015, 17:1692.
[19] Zhao Y T, Huang B B, Yang C, Xia W J. Org. Lett., 2016, 18:3326.
[20] Postigo A. Curr. Org. Chem., 2009, 13:1683.
[21] Perchyonoka V T, Lykakisb I N. Curr. Org. Chem., 2009, 13:573.
[22] Wei W T, Zhu W M, Ying W W, Wang Y N, Bao W H, Gao L H, Luo Y J, Liang H Z. Adv. Synth. Catal., 2017, 359:3551.
[23] Ying W W, Zhu W M, Liang H Z, Wei W T. Synlett, 2018, 29:215.
[24] Zhu W M, Bao W H, Ying W W, Chen W T, Huang Y L, Ge G P, Chen G P, Wei W T. Asian J. Org. Chem., 2018, 7:337.
[25] Wei W T, Zhu W M, Liang W D, Wu Y, Huang H Y, Huang Y L, Luo J F, Liang H Z. Synlett, 2017, 28:2153.
[26] Wei W T, Ying W W, Zhu W M, Wu Y, Huang Y L, Cao Y Q, Wang Y N, Liang H Z. Synlett, 2017, 28:2307.
[27] Li D D, Li Z Y, Wang G W. J. Org. Chem., 2015, 80:190.
[28] Zhu C, Yang B, Bäckvall J E. J. Am. Chem. Soc., 2015, 137:11868.
[29] Augustine R L. Carbon-Carbon Bond Formation. Dekker:New York, 1979.
[30] Naresh G, Kant R, Narender T. Org. Lett., 2015, 17:3446.
[31] Wu C J, Zhong J J, Meng Q Y, Lei T, Gao X W, Tung C H, Wu L Z. Org. Lett., 2015, 17:884.
[32] Li H, Liu C J, Zhang Y H, Sun Y D, Wang B, Liu W B. Org. Lett., 2015, 17:932.
[33] Cui L, Chen H, Liu C, Li C Z. Org. Lett., 2016, 18:2188.
[34] Xu J, Qiao L, Shen J B, Chai K J, Shen C, Zhang P F. Org. Lett., 2017, 19:5661.
[35] Shen H G, Liu Z L, Zhang P, Tan X Q, Zhang Z Z, Li C Z. J. Am. Chem. Soc., 2017, 139:9843.
[36] Ruiz-Castillo P, Buchwald S L. Chem. Rev., 2016, 116:12564.
[37] Cho H S, Kim J Y, Kwak J, Chang S. Chem. Soc. Rev., 2011, 40:5068.
[38] Ramirez T A, Zhao B, Shi Y. Chem. Soc. Rev., 2012, 41:931.
[39] Huang H, Chen W H, Xu Y, Li J. Green Chem., 2015, 17:4715.
[40] Sharma A, Hartwig J F. Nature, 2015, 29:600.
[41] 窦言东(Dou Y D), 应莎莎(Ying S S), 张晨卿(Zhang C Q), 余黎阳(Yu L Y), 郑垦(Zheng K), 朱勍(Zhu Q). 化学进展(Progress in Chemistry), 2007, 29(02/3):293.
[42] Wang T, Yuan L, Zhao Z G, Shao A L, Gao M, Huang Y F, Xiong F, Zhang H L, Zhao J F. Green Chem., 2015, 17:2741.
[43] Liu C, Wang X Q, Li Z D, Cui L, Li C Z. J. Am. Chem. Soc., 2015, 137:9820.
[44] Natarajan P, Priya, Chuskit D. Green Chem., 2017, 19:5854.
[45] Deb M L, Pegu C D, Borpatra P J, Saikia P J, Baruah P K. Green Chem., 2017, 19:4036.
[46] Chylinska J B, Urbanski T, Mordarski M. J. Med. Chem., 1963, 6:484.
[47] Waisser K, Gregor K, Kubicova L, Klimesova V, Kunes J, Machacek M, Kaustova J. Eur.J. Med. Chem., 2000, 35:733.
[48] Petrlikova E, Waisser K, DiviSova H, Husakova P, Vrabcova P, Kunes J, Kolar K, Stolarikova J. Bioorg. Med. Chem., 2010, 18:8178.
[49] Wei W T, Zhu W M, Ying W W, Wu Y, Huang Y L, Liang H Z. Org. Biomol. Chem., 2017, 15:5254.
[50] Jiang Y Q, Li X F, Li X Y, Sun Y M, Zhao Y R, Jia S H, Guo N, Xu G Q, Zhang W W. Chin. J. Chem., 2017, 35:1239.
[51] Xu Z W, Yan P F, Jiang H, Liu K R, Zhang Z C. Chin. J. Chem., 2017, 35:581.
[52] Yu D G, Li B J, Shi Z J. Acc. Chem. Res., 2010, 43:1486.
[53] Hossain M M, Huang W K, Chen H J, Wang P H, Shyu S G. Green Chem., 2014, 16:3013.
[54] Ren L H, Wang L Y, Lv Y, Shang S S, Chen B, Gao S. Green Chem., 2015, 17:2369.
[55] Satheesh V, Sengoden M, Punniyamurthy T. J. Org. Chem., 2016, 81:9792.
[56] Dembitsky V M. Eur. J. Med. Chem. 2008, 43:223.
[57] Zmitek K, Zupan M, Iskra J. Org. Biomol. Chem., 2007, 5:3895.
[58] Kong D L, Cheng L, Yue T, Wu H R, Feng W C, Wang D, Liu L. J. Org. Chem., 2016, 81:5337.
[59] Xie H Y, Han L S, Huang S, Lei X T, Cheng Y, Zhao W F, Sun H B, Wen X A, Xu Q L. J. Org. Chem., 2017, 82:5236.
[60] Wu J L, Liu Y, Ma X W, Liu P, Gu C Z, Dai B. Chin. J. Chem., 2017, 35:1391.
[61] Wei W T, Zhu W M, Shao Q J, Bao W H, Chen W T, Chen G P, Luo J F, Liang H Z. ACS Sustainable Chem. Eng., 2018, 6:8029.
[62] Dondoni A. Angew. Chem. Int. Ed., 2010, 120:9133.
[63] Cole D C, Lennox W J, Lombardi S, Ellingboe J W, Bernotas R C, Tawa G J, Mazandarani H, Smith D L, Zhang G M, Coupet J, Schechter L E. J. Med. Chem., 2005, 48:353.
[64] Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B. J. Med. Chem., 2005, 48:547.
[65] 孙丰莉(Sun F L), 刘学民(Liu X M), 陈新志(Chen X Z), 钱超(Qiao C), 葛新(Ge X). 有机化学(Chinese Journal of Organic Chemistry), 2017, 37:2211.
[66] Zheng L, Zhou Z Z, He Y T, Li L H, Ma J W, Qiu Y F, Zhou P X, Liu X Y, Xu P F, Liang Y M. J. Org. Chem., 2016, 81:66.
[67] Yang Y, Bao Y J, Guan Q Q, Sun Q, Zha Z G, Wang Z Y. Green Chem., 2017, 19:112.
[68] Lai J Y, Yuan G Q. Tetrahedron Lett., 2017, 59:524.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[9] 杨一舟, 彭兵权, 雷晓玲, 方海平. 离子溶液中的芳香环:反常化学计量比的二维晶体和其铁磁性[J]. 化学进展, 2022, 34(7): 1524-1536.
[10] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[11] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[12] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[13] 南明君, 乔琳, 刘玉琴, 张华民, 马相坤. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413.
[14] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[15] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
阅读次数
全文


摘要

水介质中的有机自由基反应