English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 983-991 DOI: 10.7536/PC210122 前一篇   后一篇

• 综述 •

p区金属基电催化还原二氧化碳制甲酸催化剂研究进展

于丰收*(), 湛佳宇, 张鲁华   

  1. 河北工业大学化工节能过程集成与资源利用国家地方联合工程实验室 化工学院 天津 300131
  • 收稿日期:2021-01-26 修回日期:2021-05-18 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 于丰收
  • 基金资助:
    国家自然科学基金项目(21905073); 国家自然科学基金项目(22008048); 河北省海外高层次人才百人计划资助项目(E2019050015)

The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts

Fengshou Yu(), Jiayu Zhan, Lu-Hua Zhang   

  1. National Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology,Tianjin 300131, China
  • Received:2021-01-26 Revised:2021-05-18 Online:2022-04-24 Published:2021-07-29
  • Contact: Fengshou Yu
  • Supported by:
    National Natural Science Foundation of China(21905073); National Natural Science Foundation of China(22008048); Hundred Talents Project of Hebei Province(E2019050015)

以清洁可再生电能为驱动力,常温常压下将二氧化碳(CO2)选择性还原转化生成高附加值化学品或燃料,是解决目前能源和环境问题、实现CO2资源化利用、促进碳循环回归平衡的有效手段之一。由于生成不同产物的还原电位和反应历程不同,单位产物的生产成本各有差异。最近研究表明,HCOOH是所有电化学CO2还原产物中最具有经济效益和实用价值的产物之一。本文从电催化还原CO2制HCOOH生成机理出发,综述了p区金属(如Sn、Bi、In)基催化剂在电催化还原CO2制HCOOH领域取得的重要研究进展,其中以典型催化剂为例分析了CO2还原生成HCOOH活性提高策略如氧化物还原转化、形貌调控、掺杂和合金化等,重点探讨了活性位点种类、数量以及催化剂电子结构在关键中间体*CO2.-、*OCHO的形成和吸附中的作用,最后总结了目前该领域面临的挑战以及未来发展方向。

Electrochemical CO2 reduction to value added chemical feedstocks and fuels driven by renewable electricity gives a promising and appealing approach to address the global challenges in energy and sustainability and eventually close the anthropogenic carbon cycle. The most crucial step for this conversion is to develop robust electrocatalysts promoting adsorption of CO2 molecule and subsequent activation with low energy barriers. Due to the different overpotentials and electron transfer amount needed for various reduction products, there is huge gap of producing price among a variety of products. Based on recent research, formic acid (or formate) is one of the most economically viable and useful reduction product in a couple of chemical processes. In this paper, starting with fundamental understanding of reaction mechanism, we review the main progress of p-block post-transition metal (e.g., Sn, Bi, and In) based electrocatalysts for electrochemical CO2 reduction to produce formic acid. In addition, strategies to facilitate the catalytic performance of CO2 to formic acid) conversion including reduction conversion of metal oxides, morphology control, doping and alloying to modulate the electronic structure are also be briefly reviewed. Finally, we summarize the existing challenges and present perspectives for the future development of this exciting field.

Contents

1 Introduction

2 The mechanism of CO2-to-formate conversion

3 p-block metal-based catalysts

3. 1 Sn-based catalysts

3. 2 Bi-based catalysts

3.3 In-based catalysts

4 Conclusion and outlook

()
图1 电催化还原 CO2产物能耗与其市场价关系图[10]
Fig. 1 Market price of select CO2 recycling products as a function of energy content. Lines represent minimum energy and CO2 costs[10]. Copyright 2020, Wiley-VCH
表1 p区金属基电催化剂生成甲酸性能
Table 1 The performance of various p-block metal-based electrocatalysts for CO2-to-HCOOH conversion
图2 电催化还原CO2生成甲酸、CO和其他产物的反应过程
Fig. 2 Possible reaction pathways for electrochemical CO2 reduction to formate, CO, and other products
图3 (a)碳布负载SnO2催化剂扫描电镜图;不同电位下的催化电流密度(b)和产物法拉第效率(c)[34]。石墨烯限域Sn量子点高倍透射电镜(d);不同电位下催化电流密度(e)和甲酸FE(f)[42]。Ag-Sn/SnOx结构示意图(g),高倍扫描透射电镜(h)和电子能量损失谱(i)[55]
Fig. 3 SEM images of porous SnO2 nanosheets on carbon cloth (a), and the current density (b) and corresponding FE (c) for reduction products at various potentials[34]. Copyright 2017, Wiley-VCH. The HRTEM image of the Sn quantum sheets confined in graphene (d) and Linear sweep voltammetric curves (e) and Faradaic efficiencies (f) for formate formation[42]. Copyright 2016, Nature. The structure of Ag-Sn with ultrathin partially oxidized SnO2 shell (g), and the corresponding HAADF-STEM image (h) and electron energy loss spectroscopy (EELS) mappings (i)[55]. Copyright 2017, American Chemical Society
图4 (a)BiOI电极的扫描电镜;(b)Bi纳米片与商业化Bi纳米粉末法拉第效率对比[68]。(c)BiOx/C的扫描透射电镜及示意图;(f)BiOx/C电极的法拉第效率[72]
Fig. 4 (a) SEM image of BiOI. (b) potential-dependent Faradaic efficiencies of HCOO-, CO, and H2 on Bi nanosheet in comparison with the Faradaic efficiency of HCOO- on commercial Bi nanopowder[68]. Copyright 2018, Nature. (c) STEM image and schematic representation of BiOx/C. (d) Faradic efficiencies of BiOx/C for the formation of HCOO-, H2, and CO[72]. Copyright 2018, American Chemical Society
[1]
Franco F, Rettenmaier C, Jeon H S, Roldan Cuenya B. Chem. Soc. Rev., 2020, 49(19): 6884.

doi: 10.1039/D0CS00835D     URL    
[2]
Zhang S, Fan Q, Xia R, Meyer T J. Acc. Chem. Res., 2020, 53: 255.

doi: 10.1021/acs.accounts.9b00496     URL    
[3]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.

doi: 10.1002/advs.201700194     URL    
[4]
Appel A M, Bercaw J E, Bocarsly A B, Dobbek H, DuBois D L, Dupuis M, Ferry J G, Fujita E, Hille R, Kenis P J A, Kerfeld C A, Morris R H, Peden C H F, Portis A R, Ragsdale S W, Rauchfuss T B, Reek J N H, Seefeldt L C, Thauer R K, Waldrop G L. Chem. Rev., 2013, 113(8): 6621.

doi: 10.1021/cr300463y     URL    
[5]
Nielsen D U, Hu X M, Daasbjerg K, Skrydstrup T. Nat. Catal., 2018, 1(4): 244.

doi: 10.1038/s41929-018-0051-3     URL    
[6]
Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40(7): 3703.

doi: 10.1039/c1cs15008a     pmid: 21505692
[7]
Ross M B, de Luna P, Li Y F, Dinh C T, Kim D, Yang P D, Sargent E H. Nat. Catal., 2019, 2(8): 648.

doi: 10.1038/s41929-019-0306-7     URL    
[8]
Birdja Y Y, PÉrez-Gallent E, Figueiredo M C, Göttle A J, Calle-Vallejo F, Koper M T M. Nat. Energy, 2019, 4(9): 732.

doi: 10.1038/s41560-019-0450-y     URL    
[9]
Raciti D, Wang C. ACS Energy Lett., 2018, 3(7): 1545.

doi: 10.1021/acsenergylett.8b00553     URL    
[10]
Han N, Ding P, He L, Li Y Y, Li Y G. Adv. Energy Mater., 2020, 10(11): 1902338.

doi: 10.1002/aenm.201902338     URL    
[11]
Philips F M, Gruter M G J, Koper T M M, Schouten J P K. ACS Sustainable Chem. Eng., 2020, 8(41): 15430.

doi: 10.1021/acssuschemeng.0c05215     URL    
[12]
Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K R, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Chem. Rev., 2019, 119(12): 7610.

doi: 10.1021/acs.chemrev.8b00705     URL    
[13]
Ye L, Ying Y R, Sun D R, Zhang Z Y, Fei L F, Wen Z H, Qiao J L, Huang H T. Angew. Chem. Int. Ed., 2020, 59(8): 3244.

doi: 10.1002/anie.201912751     URL    
[14]
Sun Z Y, Ma T, Tao H C, Fan Q, Han B X. Chem, 2017, 3(4): 560.

doi: 10.1016/j.chempr.2017.09.009     URL    
[15]
Yu F, Zhang L H. CIESC Journal, 2021, 72 (4): 1815.
(于丰收, 张鲁华. 化工学报, 2021, 72 (4): 1815.).
[16]
Baruch M F, Pander J E III, White J L, Bocarsly A B. ACS Catal., 2015, 5(5): 3148.

doi: 10.1021/acscatal.5b00402     URL    
[17]
Yang Z N, Oropeza F E, Zhang K H L. APL Mater., 2020, 8(6): 060901.

doi: 10.1063/5.0004194     URL    
[18]
Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. J. Am. Chem. Soc., 2017, 139(12): 4290.

doi: 10.1021/jacs.7b00261     URL    
[19]
Bai X F, Chen W, Zhao C C, Li S G, Song Y F, Ge R P, Wei W, Sun Y H. Angew. Chem. Int. Ed., 2017, 56(40): 12219.

doi: 10.1002/anie.201707098     URL    
[20]
Zhao C C, Wang J L. Chem. Eng. J., 2016, 293: 161.

doi: 10.1016/j.cej.2016.02.084     URL    
[21]
Wang S B, Guan B Y, Lou X W D. J. Am. Chem. Soc., 2018, 140(15): 5037.

doi: 10.1021/jacs.8b02200     URL    
[22]
Yang H, Han N, Deng J, Wu J H, Wang Y, Hu Y P, Ding P, Li Y F, Li Y G, Lu J. Adv. Energy Mater., 2018, 8(35): 1801536.

doi: 10.1002/aenm.201801536     URL    
[23]
Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrochimica Acta, 1994, 39(11/12): 1833.

doi: 10.1016/0013-4686(94)85172-7     URL    
[24]
Ding P, Zhao H, Li T, Luo Y, Fan G, Chen G, Gao S, Shi X, Lu S, Sun X. J. Mater. Chem. A, 2020, 8(42): 21947.

doi: 10.1039/D0TA08393C     URL    
[25]
Hu H S, Gui L Q, Zhou W, Sun J, Xu J M, Wang Q, He B B, Zhao L. Electrochimica Acta, 2018, 285: 70.

doi: 10.1016/j.electacta.2018.08.002     URL    
[26]
Liu S Y, Pang F J, Zhang Q W, Guo R J, Wang Z F, Wang Y C, Zhang W Q, Ou J Z. Appl. Mater. Today, 2018, 13: 135.
[27]
An X W, Li S S, Yoshida A, Wang Z D, Hao X G, Abudula A, Guan G Q. ACS Sustainable Chem. Eng., 2019, 7(10): 9360.

doi: 10.1021/acssuschemeng.9b00515     URL    
[28]
Zhang R, Lv W X, Lei L X. Appl. Surf. Sci., 2015, 356: 24.

doi: 10.1016/j.apsusc.2015.08.006     URL    
[29]
Chen Y H, Kanan M W. J. Am. Chem. Soc., 2012, 134(4): 1986.

doi: 10.1021/ja2108799     URL    
[30]
Wu J J, Risalvato F G, Ma S G, Zhou X D. J. Mater. Chem. A, 2014, 2(6): 1647.

doi: 10.1039/C3TA13544F     URL    
[31]
Han N, Wang Y Y, Deng J, Zhou J H, Wu Y L, Yang H, Ding P, Li Y G. J. Mater. Chem. A, 2019, 7(3): 1267.

doi: 10.1039/c8ta10959a    
[32]
Yang H, Huang Y, Deng J, Wu Y L, Han N, Zha C Y, Li L G, Li Y G. J. Energy Chem., 2019, 37: 93.

doi: 10.1016/j.jechem.2018.12.004    
[33]
Chen Y Y, Vise A, Klein W E, Cetinbas F C, Myers D J, Smith W A, Deutsch T G, Neyerlin K C. ACS Energy Lett., 2020, 5(6): 1825.

doi: 10.1021/acsenergylett.0c00860     URL    
[34]
Li F W, Chen L, Knowles G P, MacFarlane D R, Zhang J. Angew. Chem. Int. Ed., 2017, 56(2): 505.

doi: 10.1002/anie.201608279     URL    
[35]
Kumar B, Atla V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M. Angew. Chem. Int. Ed., 2017, 56(13): 3645.

doi: 10.1002/anie.201612194     URL    
[36]
Zheng X L, de Luna P, García de Arquer F P, Zhang B, Becknell N, Ross M B, Li Y F, Banis M N, Li Y Z, Liu M, Voznyy O, Dinh C T, Zhuang T T, Stadler P, Cui Y, Du X W, Yang P D, Sargent E H. Joule, 2017, 1(4): 794.

doi: 10.1016/j.joule.2017.09.014     URL    
[37]
Zhang Q, Zhang Y X, Mao J F, Liu J Y, Zhou Y, Guay D, Qiao J L. ChemSusChem, 2019, 12(7): 1443.

doi: 10.1002/cssc.201802725     pmid: 30724477
[38]
Wang X, Lv J, Zhang J X, Wang X L, Xue C Z, Bian G Q, Li D S, Wang Y, Wu T. Nanoscale, 2020, 12(2): 772.

doi: 10.1039/C9NR08726E     URL    
[39]
Fu Y, Wang T, Zheng W, Lei C, Hou Y. ACS Appl. Mater. Interfaces, 2020, 12: 16178.

doi: 10.1021/acsami.9b18091     URL    
[40]
Li Q Q, Zhang X R, Zhou X D, Li Q Y, Wang H Q, Yi J, Liu Y Y, Zhang J J. J. CO2 Util., 2020, 37: 106.
[41]
Zhang S, Kang P, Meyer T J. J. Am. Chem. Soc., 2014, 136(5): 1734.

doi: 10.1021/ja4113885     URL    
[42]
Lei F C, Liu W, Sun Y F, Xu J Q, Liu K T, Liang L, Yao T, Pan B C, Wei S Q, Xie Y. Nat. Commun., 2016, 7: 12697.

doi: 10.1038/ncomms12697     URL    
[43]
Liu H, Su Y Q, Kuang S Y, Hensen E J M, Zhang S, Ma X B. J. Mater. Chem. A, 2021, 9(12): 7848.

doi: 10.1039/D1TA00285F     URL    
[44]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): 4998.
[45]
Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Energy Environ. Sci., 2015, 8(5): 1404.

doi: 10.1039/C4EE03869J     URL    
[46]
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. ChemCatChem, 2011, 3(7): 1159.

doi: 10.1002/cctc.201000397     URL    
[47]
Egdell R G, Rebane J, Walker T J, Law D S L. Phys. Rev. B, 1999, 59(3): 1792.

doi: 10.1103/PhysRevB.59.1792     URL    
[48]
An X W, Li S S, Yoshida A, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. ACS Appl. Mater. Interfaces, 2019, 11(45): 42114.

doi: 10.1021/acsami.9b13270     URL    
[49]
Zhang Y F, Liu J J, Wei Z X, Liu Q H, Wang C Y, Ma J M. J. Energy Chem., 2019, 33: 22.

doi: 10.1016/j.jechem.2018.08.017     URL    
[50]
Wei Y J, Liu J, Cheng F Y, Chen J. J. Mater. Chem. A, 2019, 7(34): 19651.

doi: 10.1039/C9TA06817A     URL    
[51]
Ju W B, Zeng J Q, Bejtka K, Ma H, Rentsch D, Castellino M, Sacco A, Pirri C F, Battaglia C. ACS Appl. Energy Mater., 2019, 2(1): 867.

doi: 10.1021/acsaem.8b01944     URL    
[52]
Sarfraz S, Garcia-Esparza A T, Jedidi A, Cavallo L, Takanabe K. ACS Catal., 2016, 6(5): 2842.

doi: 10.1021/acscatal.6b00269     URL    
[53]
Zheng X L, Ji Y F, Tang J, Wang J Y, Liu B F, Steinrück H G, Lim K, Li Y Z, Toney M F, Chan K R, Cui Y. Nat. Catal., 2021, 4(5): 55.
[54]
Choi Y W, Scholten F, Sinev I, Roldan Cuenya B. J. Am. Chem. Soc., 2019, 141(13): 5261.

doi: 10.1021/jacs.8b12766     URL    
[55]
Luc W, Collins C, Wang S W, Xin H L, He K, Kang Y J, Jiao F. J. Am. Chem. Soc., 2017, 139(5): 1885.

doi: 10.1021/jacs.6b10435     URL    
[56]
Zhang B, Cao S Y, Wu Y Z, Zhai P L, Li Z W, Zhang Y T, Fan Z Z, Wang C, Zhang X M, Hou J G, Sun L C. ChemElectroChem, 2021, 8(5): 880.

doi: 10.1002/celc.202001613     URL    
[57]
Wang Y T, Li Y H, Liu J Z, Dong C X, Xiao C Q, Cheng L, Jiang H L, Jiang H, Li C Z. Angew. Chem. Int. Ed., 2021, 60(14): 7681.

doi: 10.1002/anie.202014341     URL    
[58]
Komatsu S, Yanagihara T, Hiraga Y, Tanaka M, Kunugi A. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1995, 63(3): 217.

doi: 10.5796/kogyobutsurikagaku.63.217     URL    
[59]
Pander J E III, Baruch M F, Bocarsly A B. ACS Catal., 2016, 6(11): 7824.

doi: 10.1021/acscatal.6b01879     URL    
[60]
Nolan M. ACS Omega, 2018, 3(10): 13117.

doi: 10.1021/acsomega.8b01957     URL    
[61]
Oh W, Rhee C K, Han J W, Shong B. J. Phys. Chem. C, 2018, 122(40): 23084.

doi: 10.1021/acs.jpcc.8b07865     URL    
[62]
Walsh A, Payne D J, Egdell R G, Watson G W. Chem. Soc. Rev., 2011, 40(9): 4455.

doi: 10.1039/c1cs15098g     pmid: 21666920
[63]
Walker R J, Pougin A, Oropeza F E, Villar-Garcia I J, Ryan M P, Strunk J, Payne D J. Chem. Mater., 2016, 28(1): 90.

doi: 10.1021/acs.chemmater.5b03232     URL    
[64]
Deng P L, Wang H M, Qi R J, Zhu J X, Chen S H, Yang F, Zhou L, Qi K, Liu H F, Xia B Y. ACS Catal., 2020, 10(1): 743.

doi: 10.1021/acscatal.9b04043     URL    
[65]
Koh J H, Won D H, Eom T, Kim N K, Jung K D, Kim H, Hwang Y J, Min B K. ACS Catal., 2017, 7(8): 5071.

doi: 10.1021/acscatal.7b00707     URL    
[66]
Kim S, Dong W J, Gim S, Sohn W, Park J Y, Yoo C J, Jang H W, Lee J L. Nano Energy, 2017, 39: 44.

doi: 10.1016/j.nanoen.2017.05.065     URL    
[67]
Zhang W J, Hu Y, Ma L B, Zhu G Y, Zhao P Y, Xue X L, Chen R P, Yang S Y, Ma J, Liu J, Jin Z. Nano Energy, 2018, 53: 808.

doi: 10.1016/j.nanoen.2018.09.053     URL    
[68]
Han N, Wang Y, Yang H, Deng J, Wu J H, Li Y F, Li Y G. Nat. Commun., 2018, 9: 1320.

doi: 10.1038/s41467-018-03712-z     pmid: 29615621
[69]
García de Arquer F P, Bushuyev O S, de Luna P, Dinh C T, Seifitokaldani A, Saidaminov M I, Tan C S, Quan L N, Proppe A, Kibria M G, Kelley S O, Sinton D, Sargent E H. Adv. Mater., 2018, 30(38): 1802858.

doi: 10.1002/adma.201802858     URL    
[70]
Gong Q, Ding P, Xu M, Zhu X, Li Y. Nat. Commun., 2019, 10: 2807.

doi: 10.1038/s41467-019-10819-4     URL    
[71]
Liu S B, Lu X F, Xiao J, Wang X, Lou X W D. Angew. Chem. Int. Ed., 2019, 58(39): 13828.

doi: 10.1002/anie.201907674     URL    
[72]
Lee C W, Hong J S, Yang K D, Jin K, Lee J H, Ahn H Y, Seo H, Sung N E, Nam K T. ACS Catal., 2018, 8(2): 931.

doi: 10.1021/acscatal.7b03242     URL    
[73]
Hoffman Z B, Gray T S, Xu Y, Lin Q Y, Gunnoe T B, Zangari G. ChemSusChem, 2019, 12(1): 231.

doi: 10.1002/cssc.201801708     URL    
[74]
Wen G B, Lee D U, Ren B H, Hassan F M, Jiang G P, Cano Z P, Gostick J, Croiset E, Bai Z Y, Yang L, Chen Z W. Adv. Energy Mater., 2018, 8(31): 1870138.

doi: 10.1002/aenm.201870138     URL    
[75]
Detweiler Z M, White J L, Bernasek S L, Bocarsly A B. Langmuir, 2014, 30(25): 7593.

doi: 10.1021/la501245p     pmid: 24940629
[76]
White J L, Bocarsly A B. J. Electrochem. Soc., 2016, 163(6): 410.
[77]
Luo W, Xie W, Li M, Zhang J, Züttel A. J. Mater. Chem. A, 2019, 7(9): 4505.

doi: 10.1039/C8TA11645H     URL    
[78]
Ding C M, Li A L, Lu S M, Zhang H F, Li C. ACS Catal., 2016, 6(10): 6438.

doi: 10.1021/acscatal.6b01795     URL    
[79]
Chu S L, Hong S, Masa J, Li X, Sun Z Y. Chem. Commun., 2019, 55(82): 12380.

doi: 10.1039/C9CC05435A     URL    
[80]
Xia Z, Freeman M, Zhang D X, Yang B, Lei L C, Li Z J, Hou Y. ChemElectroChem, 2018, 5(2): 253.

doi: 10.1002/celc.201700935     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[9] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[10] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[11] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[12] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.