English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 992-1010 DOI: 10.7536/PC210109 前一篇   

• 综述 •

基于生物炭的高级氧化技术降解水中有机污染物

吴飞1, 任伟1, 程成1, 王艳2, 林恒1,*(), 张晖1,*()   

  1. 1 武汉大学资源与环境科学学院 环境科学与工程系 生物质资源化学与环境生物技术湖北省重点实验室 武汉 430079
    2 安徽科技学院环境科学与工程系 凤阳 233100
  • 收稿日期:2021-01-14 修回日期:2021-06-07 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 林恒, 张晖
  • 基金资助:
    国家自然科学基金青年项目(21806125); 中国博士后科学基金面上项目(2016M602365); 中央高校基本科研业务费专项资金项目(武汉大学); 安徽省自然科学基金(1808085MB49)

Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water

Fei Wu1, Wei Ren1, Cheng Cheng1, Yan Wang2, Heng Lin1(), Hui Zhang1()   

  1. 1 Key Laboratory of Hubei Biomass-Resource Chemistry and Environmental Biotechnology, Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University,Wuhan 430079, China
    2 Department of Environmental Science and Engineering, Anhui Science and Technology University,Fengyang 233100, China
  • Received:2021-01-14 Revised:2021-06-07 Online:2022-04-24 Published:2021-07-29
  • Contact: Heng Lin, Hui Zhang
  • Supported by:
    National Natural Science Foundation of China(21806125); Postdoctoral Science Foundation of China(2016M602365); Fundamental Research Funds for Central Universities of China (awarded at Wuhan University); Natural Science Foundation of Anhui Province(1808085MB49)

碳基材料催化剂因具有良好的催化性能,同时可避免金属催化剂的重金属沥出造成的二次污染问题,常被应用于高级氧化领域。其中,以废弃生物质为原材料热解产生的生物炭,不仅具有催化潜力,还具有低成本和绿色环保等优势,被广泛用于活化过氧化氢、过一硫酸氢盐和过二硫酸盐等过氧化物降解水中有机污染物。本文介绍了生物炭的前体种类和制备方法、阐述了二者对生物炭活化能力的影响,总结了生物炭活化过氧化物的机理,分析了水质对降解污染物的影响,综述了生物炭的改性、循环使用及再生,指出了这一技术存在的问题并对后续研究进行了展望。

Carbonaceous materials with superior catalytic activity, which could avoid drawbacks of heavy metal ion leaching for metal-based catalysts, are widely used in advanced oxidation processes (AOPs). Biochar, a carbon-rich material produced by pyrolysis of biomass under oxygen limited condition, is low-cost, widely available, and environmentally friendly. Biochar has been utilized to activate peroxides such as hydrogen peroxide, peroxymonosulfate and peroxydisulfate for the degradation of pollutants in water. In this paper, precursors and preparation methods of biochar as well as their influence on catalytic activity of biochar are discussed. The activation mechanisms of peroxides by biochar and the effects of water matrices on the degradation of pollutants are summarized. The progress in the modification of biochar is reviewed. The reusability of biochar is elucidated and the regeneration methods of biochar are provided. In the end, the problems and the prospects of the biochar-based AOPs are put forward.

Contents

1 Introduction

2 Biomass precursors

2.1 Lignocellulosic biomass precursors

2.2 Non-lignocellulosic biomass precursors

2.3 Effects of biomass precursors on catalytic performance of biochar

3 Preparation methods of biochar

4 Activating mechanism of peroxides by biochar

4.1 Radical mechanism

4.2 Non-radical mechanism

5 Effects of water matrices

5.1 Effect of pH

5.2 Effects of anions and NOM

6 Modification of biochar

6.1 Acid/base modification

6.2 Graphitizing modification

6.3 Doping modification

7 Reusability and regeneration of biochar

7.1 Change of physical properties

7.2 Change of chemical properties

7.3 Regeneration methods

8 Conclusion and prospection

()
表1 不同前体的生物炭活化过氧化物降解水中有机污染物
Table 1 The degradation of organic pollutants by peroxides activated via biochar produced from different precursors
Biomass Oxidant Preparation Mechanism Active sites Reactive species Reaction condition Performance ref
Lignocellulose
biomass
Wheat; straw;
hardwood
H2O2 Pyrolysis Radical Ash (Fe、Cu、Mn、Ni、Mo);
—OH;
—COOH
·OH (main), HO2·、·O2- Catalyst = 1 g/L
H2O2 = 5 mM
1-Methyl-1-cyclohexanecarboxylic acid = 500 mg/L
pH = 7
99% mineralization of
1-Methyl-1-cyclohexanecarboxylic acid in 4 h
52
Valorized
Olive Stones
PDS Pyrolysis Radical N/A ·OH (main), ·SO4- both in solution and in the vicinity of BC surface Catalyst = 200 mg/L
PDS = 1000 mg/L
Sulfamethoxazole = 500 μg/L
Inherent pH
70% degradation of
sulfamethoxazole in 75 min
16
Corn stalk PDS Pyrolysis Nonradical Oxygen-containing functional groups ·OH, ·SO4- mainly on the
surface or boundary layer of BC
Catalyst = 0.8 g/L
PDS/norfloxacin = 120/1
Norfloxacin = 10 mg/L
Initial pH = 6.5
94% degradation of
norfloxacin in 300 min
53
Sunflower PDS Pyrolysis Radical Defects ·OH, ·SO4- Catalyst = 5 g/L
PDS = 10 mM
p-Nitrophenol = 0.72 mM
Initial pH = 2.58
Temperature = 60 ℃
86% degradation of
p-nitrophenol in 180 min
54
Sawdust PDS Pyrolysis Radical —OH
π-π*
Surface-bound ·OH, ·SO4-
(main);
·OH, ·SO4- in solution
Catalyst = 0.5 g/L
PDS = 10 mM
Clofibric acid = 1 g/L
Initial pH = 4
98% degradation of
clofibric acid in 60 min
55
Wood PDS Pyrolysis Nonradical —OH
π-π*
Surface-bounded ·OH, ·SO4-
(main)
Catalyst = 0.5 g/L
PDS = 10 mM
AO7 = 20 mg/L
Initial pH = 6
99% degradation of AO7 in 14 min 56
Rice straw PDS Pyrolysis Nonradical N/A Holes Catalyst = 0.6 g/L
PDS = 90 mg/L
Aniline = 10 mg/L
Initial pH = 3
94% degradation of aniline in 80 min 57
Sawdust PDS Pyrolysis Radical
and
Nonradical
N/A Holes,
·SO4-,·OH
Catalyst = 1.5 g/L
PDS = 9 mM
AO7 = 50 mg/L
90% degradation of AO7 in 180 min 58
Biomass Oxidant Preparation Mechanism Active sites Reactive species Reaction condition Performance ref
Pine
needle
PMS Pyrolysis Radical Defects ·OH(main),· SO4- Catalyst = 1 g/L
PMS = 8 mM
1,4-dioxane = 20 μmol/L
Initial pH = 6.5
84%degradation of
1,4-dioxane in 180 min
59
Sludge
Sludge H2O2 Pyrolysis Radical sp2C, C=O,
pyridonic N and pyridinic N of PFRs
·OH Catalyst = 0.4 g/L
H2O2 = 1 mM
Ciprofloxacin = 10 mg/L
pH = 7
93% degradation of
ciprofloxacin in 24 h
60
Sludge PDS Pyrolysis Nonradical N/A Electron transfer pathway Catalyst = 0.5 g/L
PDS = 10 mM
Sulfathiazole = 20 mg/L
pH = 6
100% removal of
sulfathiazole in 90 min
37
Sludge PMS Pyrolysis Radical
and
Nonradical
Fe(Ⅱ);
C=O;
defects
·OH, ·SO4-,1O2 Catalyst = 1 g/L
PMS = 0.8 mM
triclosan = 0.034 mM
Initial pH = 7.2
99% degradation of
triclosan in 240 min
61
Sludge PMS Hydrothermal coupled Pyrolysis Nonradical C=O 1O2 Catalyst = 0.4 g/L;
PMS = 0.4 g/L
sulfamethoxazole
= 0.01 g/L
100% degradation of
sulfamethoxazole in 15 min
22
Sludge PMS Pyrolysis Nonradical C=O 1O2 Catalyst = 0.5 g/L;
PMS = 1 mM
Bisphenol A = 1 g/L
pH = 6
~80% mineralization of bisphenol A in 30 min 23
Food waste
Shrimp shell PDS Pyrolysis Radical
and
Nonradical
sp2C Electron transfer pathway
(main),
·O2-
Catalyst = 0.2 g/L
PDS= 0.5 g/L
2,4-Dichlorophenol = 100 mg/L
Initial pH = 5.82
76% mineralization of 2,4-dichlorophenol in 120 min 27
Swine bone PDS Pyrolysis Radical
and
Nonradical
C=O for 1O2;
—OH for radicals
·OH (main),1O2, ·O2-, SO 4 · -
Electron transfer pathway
Catalyst = 0.2 g/L
PDS= 2 g/L
2,4-Dichlorophenol = 20 mg/L
100% degradation of 2,4-dichlorophenol in 120 min 62
Swine bone PDS Pyrolysis Radical
and
Nonradical
—OH, —COOH for
·SO4-,·OH;
Defects, inorganic
component for 1O2, ·O2-;
C=O for ·OH, electron
transfer process
·SO4-,·OH,1O2, ·O2-,
Electron transfer process
Catalyst = 0.1 g/L
PDS = 1 g/L
Acetaminophen = 20 mg/L
100% degradation of
acetaminophen in 120 min
62
Biomass Oxidant Preparation Mechanism Active sites Reactive species Reaction condition Performance ref
Food
waste
digestate
PMS Pyrolysis Radical
and
Nonradical
sp2C;
graphitic N;
pyridinium N;
C=O
1O2, ·O2-,·OH, ·SO4- Catalyst = 0.5 g/L;
PMS= 1 mM
Reactive brilliant red X-3B = 1 g/L
Initial pH = 3.78
>99%degradation of
X-3B in 1 min
24
Egg shell PDS Pyrolysis Radical
and
Nonradical
Defects and oxygen functional groups 1O2, ·O2-,·OH, ·SO4-,
Electron transfer pathway
Catalyst = 0.167 g/L
PDS= 1 g/L
2,4-dichlorophenol= 100 mg/L
90% removal of 2,4-Dichlorophenol in 2 h 25
Manure
Swine manure H2O2 Pyrolysis Radical PFRs ·OH(main), ·O2- Catalyst = 0.5 g/L
H2O2 = 10 mM
Sulfamethazine = 35.9 μmol/L
pH = 7.4
> 85% degradation of
sulfamethazine in 30 min
27
Pig manure H2O2 Pyrolysis Radical PFRs ·OH Catalyst = 0.5 g/L
H2O2 = 5 mM
Tetracycline = 67.5 μmol/L
pH = 7.4
Nearly 100% degradation of tetracycline in 240 min 28
Alage
Enteromorpha PDS Pyrolysis Radical
and
Nonradical
graphitic N 1O2, ·O2-, Electron transfer
pathway
Catalyst = 0.05 g/L
PDS = 4 mM
Sulfamethoxazole = 5 mg/L
>95% degradation of
sulfamethoxazole in 90 min
31
Spirulina residue PDS Pyrolysis Nonradical Positively charged O near N-dopants Electron transfer pathway Catalyst = 0.5 g/L
PDS = 6 mM
Sulfamethoxazole = 20 mg/L
100% degradation of
sulfamethoxazole in 45 min
63
Yeast
Yeast cell (dry weight) PMS Cacination in
molten salt
Radical
and
Nonradical
C=O for 1O2;
sp2C, graphitic N and
pyridinic N for ·OH,
·SO4-
1O2(main),·OH, ·SO4- Catalyst = 0.4 g/L
PMS = 0.4 g/L
Bisphenol A = 20 mg/L
pH = 7
100% degradation of
bisphenol A in 6 min
33
Yeast extract PMS Pyrolysis Radical
and
Nonradical
N/A 1O2, ·O2-,·OH, ·SO4-,
Electron transfer pathway
Catalyst = 0.05 g/L
PMS= 5.7 mM
p-Hydroxybenzoic acid = 10 ppm
pH = 4.5
Nearly 100% degradation of p-hydroxybenzoic acid in 90 min 32
图1 生物炭活化过氧化物机理汇总
Fig. 1 The summary of the mechanism of peroxides activation by biochar
图2 PFRs的形成过程及PFRs活化过氧化物机理示意图[50,73,81]
Fig. 2 The scheme for the formation of PFRs and the mechanism of peroxides activation by PFRs[50,73,81]
图3 PFRs活化O2产生·OH机理[79]
Fig. 3 The mechanism of PFRs activating O2 to produce ·OH[79]
图4 NaCl/KCl熔融盐制备石墨化生物炭与石墨化生物炭活化PMS降解双酚A示意图(以酵母为生物质)[33]
Fig. 4 The scheme for preparation of graphitized biochar via NaCl/KCl molten salt (taking yeast as biomass) and graphitized biochar activating PMS for the degradation of Bisphenol A[33]
图5 “一锅法”制备掺氮生物炭示意图(以尿素为氮源,木屑为生物质)[72]
Fig. 5 The scheme for preparation of N-doped biochar via one-pot synthesis (taking urea as nitrogen source and wood residue as biomass)[72]
[1]
Bai X L, Acharya K. Environ. Pollut., 2019, 247: 534.

doi: 10.1016/j.envpol.2019.01.075     URL    
[2]
Wang J L, Wang S Z. J. Environ. Manag., 2016, 182: 620.

doi: 10.1016/j.jenvman.2016.07.049     URL    
[3]
Cui M H, Gao L, Lee H S, Wang A J. Bioresour. Technol., 2020, 297: 122420.

doi: 10.1016/j.biortech.2019.122420     URL    
[4]
Xiao S, Cheng M, Zhong H, Liu Z F, Liu Y, Yang X, Liang Q H. Chem. Eng. J., 2020, 384: 123265.

doi: 10.1016/j.cej.2019.123265     URL    
[5]
Li J, Pan L J, Yu G W, Xie S Y, Li C X, Lai D G, Li Z W, You F T, Wang Y. Sci. Total. Environ., 2019, 654: 1284.

doi: 10.1016/j.scitotenv.2018.11.013     URL    
[6]
Li J, Zhu K M, Li R M, Fan X H, Lin H, Zhang H. Chemosphere, 2020, 259: 127400.

doi: 10.1016/j.chemosphere.2020.127400     URL    
[7]
Yu J F, Tang L, Pang Y, Zeng G M, Wang J J, Deng Y C, Liu Y N, Feng H P, Chen S, Ren X Y. Chem. Eng. J., 2019, 364: 146.

doi: 10.1016/j.cej.2019.01.163     URL    
[8]
Xie R J, Cao J P, Xie X W, Lei D X, Guo K H, Liu H, Zeng Y X, Huang H B. Chem. Eng. J., 2020, 401: 126077.

doi: 10.1016/j.cej.2020.126077     URL    
[9]
Rahdar S, Igwegbe C A, Ghasemi M, Ahmadi S. MethodsX, 2019, 6: 492.

doi: 10.1016/j.mex.2019.02.033     URL    
[10]
Yang S Y, Wang P, Yang X, Shan L, Zhang W Y, Shao X T, Niu R. J. Hazard. Mater., 2010, 179(1-3): 552.

doi: 10.1016/j.jhazmat.2010.01.059     URL    
[11]
Xiong L L, Ren W, Lin H, Zhang H. J. Hazard. Mater., 2021, 403: 123874.

doi: 10.1016/j.jhazmat.2020.123874     URL    
[12]
Tan W H, Ren W, Wang C J, Fan Y R, Deng B, Lin H, Zhang H. Chem. Eng. J., 2020, 394: 124864.

doi: 10.1016/j.cej.2020.124864     URL    
[13]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13): 3705.

pmid: 15296324
[14]
Liu F, Zhou H Y, Pan Z C, Liu Y, Yao G, Guo Y, Lai B. J. Hazard. Mater., 2020, 400: 123322.

doi: 10.1016/j.jhazmat.2020.123322     URL    
[15]
Fu H C, Ma S L, Zhao P, Xu S J, Zhan S H. Chem. Eng. J., 2019, 360: 157.

doi: 10.1016/j.cej.2018.11.207     URL    
[16]
Magioglou E, Frontistis Z, Vakros J, Manariotis I, Mantzavinos D. Catalysts, 2019, 9(5): 419.

doi: 10.3390/catal9050419     URL    
[17]
Mian M M, Liu G J, Zhou H H. Sci. Total. Environ., 2020, 744: 140862.

doi: 10.1016/j.scitotenv.2020.140862     URL    
[18]
Hu X, Gholizadeh M. J. Energy Chem., 2019, 39: 109.

doi: 10.1016/j.jechem.2019.01.024     URL    
[19]
Li Y C, Xing B, Ding Y, Han X H, Wang S R. Bioresour. Technol., 2020, 312: 123614.

doi: 10.1016/j.biortech.2020.123614     URL    
[20]
Yin R L, Guo W Q, Wang H Z, Du J S, Wu Q L, Chang J S, Ren N Q. Chem. Eng. J., 2019, 357: 589.

doi: 10.1016/j.cej.2018.09.184     URL    
[21]
Wang J, Liao Z W, Ifthikar J, Shi L R, Du Y N, Zhu J Y, Xi S, Chen Z Q, Chen Z L. Chemosphere, 2017, 185: 754.

doi: S0045-6535(17)31136-0     pmid: 28734212
[22]
Hu W R, Tan J T, Pan G H, Chen J, Chen Y D, Xie Y, Wang Y B, Zhang Y K. Sci. Total. Environ., 2020, 728: 138853.

doi: 10.1016/j.scitotenv.2020.138853     URL    
[23]
Huang B C, Jiang J, Huang G X, Yu H Q. J. Mater. Chem. A, 2018, 6(19): 8978.

doi: 10.1039/C8TA02282H     URL    
[24]
Huang S M, Wang T, Chen K, Mei M, Liu J X, Li J P. Waste Manag., 2020, 107: 211.

doi: 10.1016/j.wasman.2020.04.009     URL    
[25]
Liu H Y, Liu Y N, Tang L, Wang J J, Yu J F, Zhang H, Yu M L, Zou J J, Xie Q Q. Sci. Total. Environ., 2020, 745: 141095.

doi: 10.1016/j.scitotenv.2020.141095     URL    
[26]
Yu J F, Tang L, Pang Y, Zeng G M, Feng H P, Zou J J, Wang J J, Feng C Y, Zhu X, Ouyang X L, Tan J S. Appl. Catal. B: Environ., 2020, 260: 118160.

doi: 10.1016/j.apcatb.2019.118160     URL    
[27]
Deng R, Luo H, Huang D L, Zhang C. Chemosphere, 2020, 255: 126975.

doi: 10.1016/j.chemosphere.2020.126975     URL    
[28]
Huang D L, Luo H, Zhang C, Zeng G M, Lai C, Cheng M, Wang R Z, Deng R, Xue W J, Gong X M, Guo X Y, Li T. Chem. Eng. J., 2019, 361: 353.

doi: 10.1016/j.cej.2018.12.098     URL    
[29]
Duan X, Chen Y Z, Yan Y Y, Feng L Y, Chen Y G, Zhou Q. Bioresour. Technol., 2019, 289: 121637.

doi: 10.1016/j.biortech.2019.121637     URL    
[30]
Ho S H, Chen Y D, Li R X, Zhang C F, Ge Y M, Cao G L, Ma M, Duan X G, Wang S B, Ren N Q. Water Res., 2019, 159: 77.

doi: 10.1016/j.watres.2019.05.008     URL    
[31]
Qi Y F, Ge B X, Zhang Y Q, Jiang B, Wang C Z, Akram M, Xu X. J. Hazard. Mater., 2020, 399: 123039.

doi: 10.1016/j.jhazmat.2020.123039     URL    
[32]
Tian W J, Lin J K, Zhang H Y, Duan X G, Sun H Q, Wang H, Wang S B. J. Hazard. Mater., 2021, 408: 124459.

doi: 10.1016/j.jhazmat.2020.124459     URL    
[33]
Xie Y, Hu W R, Wang X Q, Tong W H, Li P Y, Zhou H, Wang Y B, Zhang Y K. Environ. Pollut., 2020, 260: 114053.

doi: 10.1016/j.envpol.2020.114053     URL    
[34]
Yang J, Sophia He Q, Yang L X. Appl. Energy, 2019, 250: 926.

doi: 10.1016/j.apenergy.2019.05.033     URL    
[35]
Zhang X Y, Zhou J, Xu Z J, Zhu P R, Liu J Y. J. Hazard. Mater., 2021, 402: 123635.

doi: 10.1016/j.jhazmat.2020.123635     URL    
[36]
Jellali S, Khiari B, Usman M, Hamdi H, Charabi Y, Jeguirim M. Renew. Sustain. Energy Rev., 2021, 144: 111068.

doi: 10.1016/j.rser.2021.111068     URL    
[37]
Chen Y D, Duan X G, Zhang C F, Wang S B, Ren N Q, Ho S H. Chem. Eng. J., 2020, 384: 123244.

doi: 10.1016/j.cej.2019.123244     URL    
[38]
Dai L C, Li L, Zhu W K, Ma H Q, Huang H G, Lu Q, Yang M, Ran Y. Bioresour. Technol., 2020, 298: 122576.

doi: 10.1016/j.biortech.2019.122576     URL    
[39]
Chen B L, Zhou D D, Zhu L Z. Environ. Sci. Technol., 2008, 42(14): 5137.

doi: 10.1021/es8002684     URL    
[40]
Kong L, Liu J, Zhou Q, Sun Z, Ma Z. Biochem. Eng. J., 2019, 152.
[41]
Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S C. Carbon, 2011, 49(3): 838.

doi: 10.1016/j.carbon.2010.10.025     URL    
[42]
Spielmeyer A. Sustain. Chem. Pharm., 2018, 9: 76.
[43]
Shen X L, Zeng J F, Zhang D L, Wang F, Li Y J, Yi W M. Sci. Total. Environ., 2020, 704: 135283.

doi: 10.1016/j.scitotenv.2019.135283     URL    
[44]
Li D C, Jiang H. Bioresour. Technol., 2017, 246: 57.

doi: 10.1016/j.biortech.2017.07.029     URL    
[45]
Rodrigues R, Santos M S, Nunes R S, Carvalho W A, Labuto G. Fuel, 2021, 299: 120923.

doi: 10.1016/j.fuel.2021.120923     URL    
[46]
Wang H Z, Guo W Q, Liu B H, Si Q S, Luo H C, Zhao Q, Ren N Q. Appl. Catal. B: Environ., 2020, 279: 119361.

doi: 10.1016/j.apcatb.2020.119361     URL    
[47]
Zhuang M H, Shan N, Wang Y C, Caro D, Fleming R M, Wang L G. Sci. Total. Environ., 2020, 722: 137693.

doi: 10.1016/j.scitotenv.2020.137693     URL    
[48]
Kieliszek M, Kot A M, Bzducha-WrÓbel A, BŁazejak S, Gientka I, Kurcz A. Fungal Biol. Rev., 2017, 31(4): 185.

doi: 10.1016/j.fbr.2017.06.001     URL    
[49]
Meng H, Nie C Y, Li W L, Duan X G, Lai B, Ao Z M, Wang S B, An T C. J. Hazard. Mater., 2020, 399: 123043.

doi: 10.1016/j.jhazmat.2020.123043     URL    
[50]
Fang G D, Liu C, Gao J, Dionysiou D D, Zhou D M. Environ. Sci. Technol., 2015, 49(9): 5645.

doi: 10.1021/es5061512     URL    
[51]
Gu L, Zhu N W, Guo H Q, Huang S Q, Lou Z Y, Yuan H P. J. Hazard. Mater., 2013, 246/247: 145.

doi: 10.1016/j.jhazmat.2012.12.012     URL    
[52]
Devi P, Dalai A K, Chaurasia S P. Chemosphere, 2020, 241: 125007.

doi: 10.1016/j.chemosphere.2019.125007     URL    
[53]
Wang B, Li Y N, Wang L. Chemosphere, 2019, 237: 124454.

doi: 10.1016/j.chemosphere.2019.124454     URL    
[54]
Sun P, Zhang K K, Gong J Y, Khan A, Zhang Y, Islama M S, Zhang Y R. Environ. Sci. Pollut. Res., 2019, 26(26): 27482.

doi: 10.1007/s11356-019-05881-w     URL    
[55]
Zhu K M, Wang X S, Geng M Z, Chen D, Lin H, Zhang H. Chem. Eng. J., 2019, 374: 1253.

doi: 10.1016/j.cej.2019.06.006     URL    
[56]
Zhu K M, Wang X S, Chen D, Ren W, Lin H, Zhang H. Chemosphere, 2019, 231: 32.

doi: 10.1016/j.chemosphere.2019.05.087     URL    
[57]
Wu Y, Guo J, Han Y J, Zhu J Y, Zhou L X, Lan Y Q. Chemosphere, 2018, 200: 373.

doi: 10.1016/j.chemosphere.2018.02.110     URL    
[58]
He J, Xiao Y, Tang J C, Chen H K, Sun H W. Sci. Total. Environ., 2019, 690: 768.

doi: 10.1016/j.scitotenv.2019.07.043     URL    
[59]
Ouyang D, Chen Y, Yan J C, Qian L B, Han L, Chen M F. Chem. Eng. J., 2019, 370: 614.

doi: 10.1016/j.cej.2019.03.235    
[60]
Luo K, Yang Q, Pang Y, Wang D B, Li X, Lei M, Huang Q. Chem. Eng. J., 2019, 374: 520.

doi: 10.1016/j.cej.2019.05.204     URL    
[61]
Wang S Z, Wang J L. Chem. Eng. J., 2019, 356: 350.

doi: 10.1016/j.cej.2018.09.062     URL    
[62]
Zhou X R, Zeng Z T, Zeng G M, Lai C, Xiao R, Liu S Y, Huang D L, Qin L, Liu X G, Li B S, Yi H, Fu Y K, Li L, Zhang M M, Wang Z H. Chem. Eng. J., 2020, 401: 126127.

doi: 10.1016/j.cej.2020.126127     URL    
[63]
Ho S H, Chen Y D, Li R X, Zhang C F, Ge Y M, Cao G L, Ma M, Duan X G, Wang S B, Ren N Q. Water Res., 2019, 159: 77.

doi: 10.1016/j.watres.2019.05.008     URL    
[64]
Cha J S, Park S H, Jung S C, Ryu C, Jeon J K, Shin M C, Park Y K. J. Ind. Eng. Chem., 2016, 40: 1.
[65]
Huang D L, Wang Y, Zhang C, Zeng G M, Lai C, Wan J, Qin L, Zeng Y L. RSC Adv., 2016, 6(77): 73186.

doi: 10.1039/C6RA11850J     URL    
[66]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817     URL    
[67]
Sun C, Chen T, Huang Q X, Zhan M X, Li X D, Yan J H. Chem. Eng. J., 2020, 380: 122519.

doi: 10.1016/j.cej.2019.122519     URL    
[68]
Huang D L, Zhang G X, Yi J, Cheng M, Lai C, Xu P, Zhang C, Liu Y, Zhou C Y, Xue W J, Wang R Z, Li Z H, Chen S. Chemosphere, 2021, 263: 127672.

doi: 10.1016/j.chemosphere.2020.127672     URL    
[69]
Anipsitakis G P, Dionysiou D D, Gonzalez M A. Environ. Sci. Technol., 2006, 40(3): 1000.

pmid: 16509349
[70]
Antoniou M G, de la Cruz A A, Dionysiou D D. Appl. Catal. B: Environ., 2010, 96(3/4): 290.

doi: 10.1016/j.apcatb.2010.02.013     URL    
[71]
Long A H, Zhang H, Lei Y. Sep. Purif. Technol., 2013, 118: 612.

doi: 10.1016/j.seppur.2013.08.001     URL    
[72]
Liang J, Xu X Y, Qamar Zaman W, Hu X F, Zhao L, Qiu H, Cao X D. Chem. Eng. J., 2019, 375: 121908.

doi: 10.1016/j.cej.2019.121908     URL    
[73]
Fang G D, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D M. Environ. Sci. Technol., 2014, 48(3): 1902.

doi: 10.1021/es4048126     URL    
[74]
Wang H Z, Guo W Q, Liu B H, Wu Q L, Luo H C, Zhao Q, Si Q S, Sseguya F, Ren N Q. Water Res., 2019, 160: 405.

doi: 10.1016/j.watres.2019.05.059     URL    
[75]
Gu L, Zhu N W, Zhou P. Bioresour. Technol., 2012, 118: 638.

doi: 10.1016/j.biortech.2012.05.102     URL    
[76]
Luo R, Li M Q, Wang C H, Zhang M, Nasir Khan M A, Sun X Y, Shen J Y, Han W Q, Wang L J, Li J S. Water Res., 2019, 148: 416.

doi: 10.1016/j.watres.2018.10.087     URL    
[77]
Sun H W, Peng X X, Zhang S P, Liu S W, Xiong Y, Tian S H, Fang J Y. Bioresour. Technol., 2017, 241: 244.

doi: 10.1016/j.biortech.2017.05.102     URL    
[78]
Zaeni J R J, Lim J W, Wang Z H, Ding D H, Chua Y S, Ng S L, Oh W D. Sep. Purif. Technol., 2020, 241: 116702.

doi: 10.1016/j.seppur.2020.116702     URL    
[79]
Fang G D, Zhu C Y, Dionysiou D D, Gao J, Zhou D M. Bioresour. Technol., 2015, 176: 210.

doi: 10.1016/j.biortech.2014.11.032     URL    
[80]
Yang J, Pignatello J J, Pan B, Xing B S. Environ. Sci. Technol., 2017, 51(16): 8972.

doi: 10.1021/acs.est.7b01087     URL    
[81]
Yu J N, Zhu Z L, Zhang H, Shen X L, Qiu Y L, Yin D Q, Wang S B. Chem. Eng. J., 2020, 398: 125538.

doi: 10.1016/j.cej.2020.125538     URL    
[82]
Yan J C, Han L, Gao W G, Xue S, Chen M F. Bioresour. Technol., 2015, 175: 269.

doi: 10.1016/j.biortech.2014.10.103     URL    
[83]
Jiang Y F, Yang L J, Sun T, Zhao J, Lyu Z Y, Zhuo O, Wang X Z, Wu Q, Ma J, Hu Z. ACS Catal., 2015, 5(11): 6707.

doi: 10.1021/acscatal.5b01835     URL    
[84]
Huong P T, Jitae K, Al Tahtamouni T M, le Minh Tri N, Kim H H, Cho K H, Lee C. J. Water Process. Eng., 2020, 33: 101037.

doi: 10.1016/j.jwpe.2019.101037     URL    
[85]
Oh W D, Veksha A, Chen X, Adnan R, Lim J W, Leong K H, Lim T T. Chem. Eng. J., 2019, 374: 947.

doi: 10.1016/j.cej.2019.06.001     URL    
[86]
Liu L, Li Y N, Li W, Zhong R X, Lan Y Q, Guo J. Environ. Res., 2020, 187: 109665.

doi: 10.1016/j.envres.2020.109665     URL    
[87]
Liu F, Li W W, Wu D C, Tian T, Wu J F, Dong Z M, Zhao G C. J. Colloid Interface Sci., 2020, 572: 318.

doi: 10.1016/j.jcis.2020.03.116     URL    
[88]
Ding D H, Yang S J, Qian X Y, Chen L W, Cai T M. Appl. Catal. B: Environ., 2020, 263: 118348.

doi: 10.1016/j.apcatb.2019.118348     URL    
[89]
Zhu S S, Jin C, Duan X G, Wang S B, Ho S H. Chem. Eng. J., 2020, 393: 124725.

doi: 10.1016/j.cej.2020.124725     URL    
[90]
Ye S J, Zeng G M, Tan X F, Wu H P, Liang J, Song B, Tang N, Zhang P, Yang Y Y, Chen Q, Li X P. Appl. Catal. B: Environ., 2020, 269: 118850.

doi: 10.1016/j.apcatb.2020.118850     URL    
[91]
Liu B H, Guo W Q, Wang H Z, Si Q S, Zhao Q, Luo H C, Ren N Q. Chem. Eng. J., 2020, 396: 125119.

doi: 10.1016/j.cej.2020.125119     URL    
[92]
Ren W, Xiong L L, Yuan X H, Yu Z W, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(24): 14595.

doi: 10.1021/acs.est.9b05475     URL    
[93]
Ren W, Xiong L L, Nie G, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(2): 1267.

doi: 10.1021/acs.est.9b06208     URL    
[94]
Zhang X C, Zhang R Y, Niu S Y, Zheng J M, Guo C F. Appl. Surf. Sci., 2019, 475: 355.

doi: 10.1016/j.apsusc.2018.12.301     URL    
[95]
Yaw C S, Tang J W, Soh A K, Chong M N. Chem. Eng. J., 2020, 380: 122501.

doi: 10.1016/j.cej.2019.122501     URL    
[96]
Babuponnusami A, Muthukumar K. J. Environ. Chem. Eng., 2014, 2(1): 557.

doi: 10.1016/j.jece.2013.10.011     URL    
[97]
Peng Y T, Tang H M, Yao B, Gao X, Yang X, Zhou Y Y. Chem. Eng. J., 2021, 414: 128800.

doi: 10.1016/j.cej.2021.128800     URL    
[98]
Huang W Q, Xiao S, Zhong H, Yan M, Yang X. Chem. Eng. J., 2021, 418: 129297.

doi: 10.1016/j.cej.2021.129297     URL    
[99]
Xu Y, Lin Z Y, Zhang H. Chem. Eng. J., 2016, 285: 392.

doi: 10.1016/j.cej.2015.09.091     URL    
[100]
Huang J Z, Zhang H C. Environ. Int., 2019, 133: 105141.

doi: 10.1016/j.envint.2019.105141     URL    
[101]
Sun P Z, Li Y X, Meng T, Zhang R C, Song M, Ren J. Water Res., 2018, 147: 91.

doi: 10.1016/j.watres.2018.09.051     URL    
[102]
Ren W, Zhou P, Nie G, Cheng C, Duan X, Zhang H, Wang S. Water Res., 2020, 186: 116361.

doi: 10.1016/j.watres.2020.116361     URL    
[103]
Wang Y B, Liu M, Zhao X, Cao D, Guo T, Yang B. Carbon, 2018, 135: 238.

doi: 10.1016/j.carbon.2018.01.106     URL    
[104]
Guan C T, Jiang J, Luo C W, Pang S Y, Yang Y, Wang Z, Ma J, Yu J, Zhao X. Chem. Eng. J., 2018, 337: 40.

doi: 10.1016/j.cej.2017.12.083     URL    
[105]
Li F Y, Xie Y, Wang Y, Fan X J, Cai Y B, Mei Y Y. Environ. Pollut. Bioavailab., 2019, 31(1): 32.

doi: 10.1080/26395940.2019.1578185     URL    
[106]
Yu Y, Huang F, Liu X Y, Song C J, Xu Y H, Zhang Y J. Sci. Total. Environ., 2019, 654: 942.

doi: 10.1016/j.scitotenv.2018.11.156     URL    
[107]
Wang Y Y, Dong H R, Li L, Tian R, Chen J, Ning Q, Wang B, Tang L, Zeng G M. Bioresour. Technol., 2019, 291: 121840.

doi: 10.1016/j.biortech.2019.121840     URL    
[108]
Mian M M, Liu G J. Chem. Eng. J., 2020, 392: 123681.

doi: 10.1016/j.cej.2019.123681     URL    
[109]
Sun B T, Skyllas-Kazacos M. Electrochimica Acta, 1992, 37(13): 2459.

doi: 10.1016/0013-4686(92)87084-D     URL    
[110]
Hsiao M C, Liao S H, Yen M Y, Teng C C, Lee S H, Pu N W, Wang chung-an, Sung Y, Ger M D, Ma C C M, Hsiao M H. J. Mater. Chem., 2010, 20(39): 8496.

doi: 10.1039/c0jm01679a     URL    
[111]
Ping Y J, Yang S J, Han J Z, Li X, Zhang H L, Xiong B Y, Fang P F, He C Q. Electrochimica Acta, 2021, 380: 138237.

doi: 10.1016/j.electacta.2021.138237     URL    
[112]
Mian M M, Liu G J. RSC Adv., 2018, 8(26): 14237.

doi: 10.1039/C8RA02258E     URL    
[113]
Sevilla M, Sanchís C, ValdÉs-Solís T, MorallÓn E, Fuertes A B. J. Phys. Chem. C, 2007, 111(27): 9749.

doi: 10.1021/jp072246x     URL    
[114]
Demir M, Kahveci Z, Aksoy B, Palapati N K R, Subramanian A, Cullinan H T, El-Kaderi H M, Harris C T, Gupta R B. Ind. Eng. Chem. Res., 2015, 54(43): 10731.

doi: 10.1021/acs.iecr.5b02614     URL    
[115]
Major I, Pin J M, Behazin E, Rodriguez-Uribe A, Misra M, Mohanty A. Green Chem., 2018, 20(10): 2269.

doi: 10.1039/C7GC03457A     URL    
[116]
Sevilla M, Fuertes A B. Chem. Phys. Lett., 2010, 4901-3: 63.
[117]
Du L, Xu W H, Liu S B, Li X, Huang D L, Tan X F, Liu Y G. J. Colloid Interface Sci., 2020, 577: 419.

doi: 10.1016/j.jcis.2020.05.096     URL    
[118]
Li Y, Ma S L, Xu S J, Fu H C, Li Z Q, Li K, Sheng K, Du J G, Lu X, Li X H, Liu S L. Chem. Eng. J., 2020, 387: 124094.

doi: 10.1016/j.cej.2020.124094     URL    
[119]
Wang G L, Chen S, Quan X, Yu H T, Zhang Y B. Carbon, 2017, 115: 730.

doi: 10.1016/j.carbon.2017.01.060     URL    
[120]
Sun H Q, Kwan C, Suvorova A, Ang H M, TadÉ M O, Wang S B. Appl. Catal. B: Environ., 2014, 154/155: 134.

doi: 10.1016/j.apcatb.2014.02.012     URL    
[121]
Xu L, Wu C X, Liu P H, Bai X, Du X Y, Jin P K, Yang L, Jin X, Shi X, Wang Y. Chem. Eng. J., 2020, 387: 124065.

doi: 10.1016/j.cej.2020.124065     URL    
[122]
Gao Y W, Zhu Y, Lyu L, Zeng Q Y, Xing X C, Hu C. Environ. Sci. Technol., 2018, 52(24): 14371.

doi: 10.1021/acs.est.8b05246     URL    
[123]
Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X, Huang S M. ACS Nano, 2012, 6(1): 205.

doi: 10.1021/nn203393d     pmid: 22201338
[124]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.).

doi: 10.7536/PC170310    
[125]
Oh W D, Lisak G, Webster R D, Liang Y N, Veksha A, Giannis A, Moo J G S, Lim J W, Lim T T. Appl. Catal. B: Environ., 2018, 233: 120.

doi: 10.1016/j.apcatb.2018.03.106     URL    
[126]
Zhao L, Zhao Y H, Nan H Y, Yang F, Qiu H, Xu X Y, Cao X D. J. Hazard. Mater., 2020, 382: 121033.

doi: 10.1016/j.jhazmat.2019.121033     URL    
[127]
Du J, Zhang L, Ali A, Li R H, Xiao R, Guo D, Liu X Y, Zhang Z Y, Ren C Y, Zhang Z Q. Process. Saf. Environ. Prot., 2019, 125: 260.

doi: 10.1016/j.psep.2019.03.035     URL    
[128]
Zhang P Z, Zhang X X, Li Y F, Han L J. Bioresour. Technol., 2020, 302: 122850.

doi: 10.1016/j.biortech.2020.122850     URL    
[129]
Chen X Y, Yang L, Myneni S C B, Deng Y. Chem. Eng. J., 2019, 373: 840.

doi: 10.1016/j.cej.2019.05.059     URL    
[1] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[2] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[3] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[4] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[5] 杨世迎, 张翱, 任腾飞, 张宜涛. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展, 2017, 29(5): 539-552.
[6] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[7] 王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(08): 1246-1259.
[8] 方德彩*. [2+2]环加成反应机理的理论研究[J]. 化学进展, 2012, 24(06): 879-885.
[9] 韩强, 杨世迎, 杨鑫, 邵雪停, 牛瑞, 王雷雷. 钴催化过一硫酸氢盐降解水中有机污染物:机理及应用研究[J]. 化学进展, 2012, 24(01): 144-156.
[10] 刘春立, 王路化. 铀酰配合物单晶的合成与结构[J]. 化学进展, 2011, 23(7): 1372-1378.
[11] 孔德明. G-四链体-氯化血红素DNA酶在传感器设计中的应用[J]. 化学进展, 2011, 23(10): 2119-2131.
[12] 金飞,丁杭军,栾奕,王戈. 钼、钨系过氧化物在Sharpless烯烃环氧化反应中的应用*[J]. 化学进展, 2008, 20(12): 1886-1895.
[13] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.
[14] 崔英杰,杨世迎,王萍,贾永刚. Fenton原位化学氧化法修复有机污染土壤和地下水研究*[J]. 化学进展, 2008, 20(0708): 1196-1201.
[15] 刘俊秋,罗贵民,沈家骢. 仿硒酶研究进展[J]. 化学进展, 2007, 19(012): 1928-1938.