English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 539-552 DOI: 10.7536/PC170310 前一篇   后一篇

• 综述 •

炭基材料催化过氧化物降解水中有机污染物:表面作用机制

杨世迎1,2,3*, 张翱1,3, 任腾飞3, 张宜涛3   

  1. 1. 海洋环境与生态教育部重点实验室 青岛 266100;
    2. 山东省海洋环境地质工程重点实验室 青岛 266100;
    3. 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2017-03-09 修回日期:2017-04-14 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 杨世迎 E-mail:ysy@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21107101,21677135)资助

Surface Mechanism of Carbon-Based Materials for Catalyzing Peroxide Degradation of Organic Pollutants in Water

Shiying Yang1,2,3*, Ao Zhang1,3, Tengfei Ren3, Yitao Zhang3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2017-03-09 Revised:2017-04-14 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21107101, 21677135).
近几年来,利用传统炭材料(如活性炭(AC)、生物炭(BC)、活性炭纤维(ACF)与活性炭布(ACC))以及纳米碳材料(如碳纳米管(CNT)、石墨烯(GE)、有序介孔碳(OMC)),或其表面改性后的炭基材料,代替金属催化剂,来催化活化过氧化物(包括过氧化氢(H2O2)、过一硫酸氢盐(HSO5-,PMS)、过二硫酸盐(S2O82-,PS))产生高活性羟基自由基(·OH)或硫酸根自由基(SO4·-),从而氧化去除水中难生物降解有机污染物,成为水处理领域研究热点。在炭表面富含很多起催化作用的官能团,如羟基、羧基、酮基、吡啶、吡咯等,同时具有丰富多样的缺陷形状、离域π电子、杂化C轨道等,能共同协作表现出非金属炭基催化剂的优良特性。因此,不同类型材料及其表面官能团、表面结构、电子密度等因素对炭基材料催化过氧化物的机理发挥显著作用。本文深入分析了上述炭基材料在吸附、络合中间体、电子转移过程中催化过氧化物产生强氧化性的自由基,并高效降解水中有机污染物的作用机理,综述了2010年以来该类高级氧化技术在水处理领域的研究进展,特别是通过总结炭基材料的氧化改性作用、氮化改性作用、多原子原位掺杂作用以及还原改性作用,系统阐述了表面物理化学性质对炭基材料催化过氧化物的表面作用机制的影响,并归纳了氧化剂对炭基材料的表面作用机制,对存在的问题提出了新的研究展望。
In recent years, compared to metal catalysts, metal-free carbon-based catalysts including traditional carbon materials such as activated carbon (AC), biochar (BC), activated carbon fiber (ACF) and activated carbon cloth (ACC), and new nano-carbon material such as carbon nanotubes (CNT), graphene (GE), ordered mesoporous carbon (OMC), and their surface modified materials are gradually investigated as a new peroxide activator. In the field of water treatment, the above carbon-based materials can be used to catalyze and activate peroxides such as hydrogen peroxide (H2O2), peroxymonosulfate (HSO-5, PMS) or persulfate (S2O2-8, PS) to produce highly active hydroxyl radicals (·OH) or sulfate radicals (SO4·-), which can efficiently degrade organic contaminants through advance oxidation processes (AOPs). What's more, the surface structure of carbon-based materials is rich in functional groups, such as hydroxyl, carboxyl, ketone, pyridine, pyrrole, etc., as well as abundant and varied defect shape, delocalized π electrons, hybrid C orbitals, and so on. They can work together and show the excellent catalytic properties of metal-free carbon-based materials. Therefore, different types of materials and their surface functional groups, surface structure, electron density and other factors play a significant role in the mechanism of carbon-based materials catalyzing peroxides. Accordingly, the progress of this AOP since 2010 and the surface mechanism of the above carbon-based materials in catalyzing peroxide and then degrading organic pollutants in water through the process of adsorption, complexing intermediates and electron transfer are deeply reviewed. Especially, the effects of surface physical and chemical properties on catalyzing mechanisms by the way of oxidation, nitriding, polyatomic in-situ doping and reduction modification are summarized. In addition, the influence mechanism of oxidants on the surface of carbon-based materials is also studied. At the same time, the prospects of the existing problems are pointed out.
Contents
1 Introduction
2 Material differences
2.1 Non-nano carbon material
2.2 Nano carbon material
3 The mechanism of the surface physical and
chemical properties
3.1 The effect of oxidation
3.2 The effect of nitriding
3.3 The effect of polyatomic in-situ doping
3.4 The effect of reductive treatments
4 The influence mechanism of oxidants on the surface of carbon-based materials
4.1 Physical properties
4.2 Chemical properties
5 Conclusion

中图分类号: 

()
[1] Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(3):1027.
[2] Cheng M, Zeng G M, Huang D L, Cui L, Xu P, Zhang C, Liu Y. Chem. Eng. J., 2016, 284:582.
[3] Ghanbari F, Moradi M. Chem. Eng. J., 2017, 310:41.
[4] Oh W D, Dong Z L, Lim T T. Appl. Catal. B:Environ., 2016, 194:169.
[5] 杨鑫(Yang X), 杨世迎(Yang S Y), 邵雪停(Shao X T), 王雷雷(Wang L L), 牛瑞(Niu R). 化学进展(Progress in Chemistry), 2010, 22(10):2071.
[6] Zomer R J, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Noordwijk M V, Wang M. Sci. Rep., 2016, 6:29987.
[7] Yang S Y, Li L, Xiao T, Zheng D, Zhang Y T. Appl. Surf. Sci., 2016, 383:142.
[8] Moreno-Castilla C, Fontecha-Cámara M A, álvarez-Merino M A, López-Ramón M V, Carrasco-Marín F. Adsorption, 2011, 17(3):413.
[9] Duan X G, Ao Z M, Zhou L, Sun H Q, Wang G X, Wang S B. Appl. Catal. B:Environ., 2016, 188:98.
[10] Duan X, Sun H, Ao Z, Zhou L, Wang G, Wang S. Carbon, 2016, 107:371.
[11] Indrawirawan S, Sun H Q, Duan X G, Wang S B. Appl. Catal. B:Environ., 2015, 179:352.
[12] 冯晓苗(Feng X M), 李瑞梅(Li R M), 杨晓燕(Yang X Y), 侯文华(Hou W H). 化学进展(Progress in Chemistry), 2012, 24(11):2158.
[13] Fang G D, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D M. Environ. Sci. Technol., 2014, 48(3):1902.
[14] Duan X G, Sun H Q, Kang J, Wang Y X, Indrawirawan S, Wang S B. ACS Catal., 2015, 5:4629.
[15] Zhang J, Shao X, Shi C, Yang S. Chem. Eng. J., 2013, 232(10):259.
[16] Peng W C, Liu S Z, Sun H Q, Yao Y J, Zhi L J, Wang S B. J. Mater. Chem. A, 2013, 1(19):5854.
[17] Saputra E, Muhammad S, Sun H Q, Wang S B. RSC Adv., 2013, 3(2013):21905.
[18] Sun H, Kwan C K, Suvorova A, Ang H M, Tadé M O, Wang S. Appl. Catal. B:Environ., 2014, s 154/155(5):134.
[19] Yang S Y, Xiao T, Zhang J, Chen Y, Li L. Sep. Purif. Technol., 2015, 143:19.
[20] Rui S R, Silva A M T, Figueiredo J L, Faria J L, Gomes H T. Carbon, 2013, 62(5):97.
[21] Yang S Y, Li L, Xiao T, Zhang Y T, Zheng D. Sep. Purif. Technol., 2016, 160:81.
[22] Duan X G, O'Donnell K, Sun H Q, Wang Y X, Wang S B. Small, 2015, 11(25):3036.
[23] Oliveira L C A, Silva C N, Yoshida M I, Lago R M. Carbon, 2004, 42(11):2279.
[24] Kimura M, Miyamoto I. Bull. Chem. Soc. Jpn., 1994, 67(9):2357.
[25] Georgi A, Kopinke F D. Appl. Catal. B:Environ., 2005, 58(1):9.
[26] Liang C, Lin Y T, Shih W H. Ind. Eng. Chem. Res., 2009, 48(18):8373.
[27] 杨波(Yang B), 李影影(Li Y Y), 余刚(Yu G), 邓述波(Deng S B), 卓琼芳(Zhuo Q F), 张鸿(Zhang H). 化学进展(Progress in Chemistry), 2014, 26(7):1265.
[28] Lee Y C, Lo S L, Kuo J, Huang C P. J. Hazard. Mater., 2013, 261(261C):463.
[29] 杨鑫(Yang X), 杨世迎(Yang S Y), 王雷雷(Wang L L), 邵雪停(Shao X T), 牛瑞(Niu R), 单良(Shan L), 张文义(Zhang W Y). 环境科学(Environmental Sciences), 2011, 32(7):1960.
[30] Yang S Y, Yang X, Shao X T, Niu R, Wang L L. J. Hazard. Mater., 2011, 186(1):659.
[31] Sun B, Ma J, Sedlak D L. Environ. Sci. Technol., 2016, 50(14):7618.
[32] O'Laughlin J, Mcelligott K. Forest Policy Econ., 2009, 11(7):535.
[33] Alhashimi H A, Aktas C B. Resour. Conserv. Recy., 2017, 118:13.
[34] Biederman L A, Phelps J, Ross B J, Polzin M, Harpole W S. Agr. Ecosyst. Environ., 2017, 236:78.
[35] Biederman L A, Harpole W S. GCB Bioenergy., 2013, 5:202.
[36] Huang D L, Wang Y, Zhang C, Zeng G M, Lai C, Wan J, Qin L, Zeng Y L. RSC Adv., 2016, 6:73186.
[37] Klüpfel L, Keiluweit M, Kleber M, Sander M. Environ. Sci. Technol., 2014, 48(10):5601.
[38] Yan J C, Han L, Gao W G, Song X, Chen M F. Bioresource Technol., 2015, 175:269.
[39] Liao S H, Bo P, Hao L, Di Z, Xing B S. Environ. Sci. Technol., 2014, 48(15):8581.
[40] Fang G D, Liu C, Gao J, Dionysiou D D, Zhou D M. Environ. Sci. Technol., 2015, 49(9):5645.
[41] Kappler A, Wuestner M L, Ruecker A, Harter J, Halama M, Behrens S. Environ. Sci. Technol. Lett., 2014, 1(8):339.
[42] Klinghoffer N B, Castaldi M J, Nzihou A. Fuel, 2015, 157:37.
[43] Freeman J J, Gimblett F G R. Carbon, 1987, 25(4):565.
[44] Nieh G K, Grow D T. J. Colloid Interface. Sci. 1987, 119(1):280.
[45] Nabais J M V, Carrott P J M, Carrott M M L R, Menéndez J A. Carbon, 2004, 42(7):1315.
[46] Pastranamartínez L M, Lópezramón M V, Morenocastilla C. J. Colloid Interface. Sci. 2009, 331(1):2.
[47] Yao Y, Wang L, Sun L, Zhu S, Huang Z, Mao Y, Lu W, Chen W. Chem. Eng. Sci., 2013, 101(14):424.
[48] Qu X F, Zheng J T, Zhang Y Z. J. Colloid Interface. Sci., 2007, 309(2):429.
[49] Wang L, Yao Y, Zhang Z, Sun L, Lu W, Chen W, Chen H. Chem. Eng. J., 2014, 251(4):348.
[50] Chen J B, Hong W, Huang T Y, Zhang L M, Li W W, Wang Y. Environ. Sci. Pollut. Res., 2016,23:18564.
[51] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 35(12):2559.
[52] Chae H K, Siberiopérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. Nature, 2004, 427(6974):523.
[53] Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438(7065):201.
[54] Sun H, Liu S, Zhou G, Ang H M, Tadé M O, Wang S. ACS Appl. Mater. Inter., 2012, 4(10):5466.
[55] Ji L L, Shao Y, Xu Z Y, Zheng S R, Zhu D Q. Environ. Sci. Technol., 2010, 44(16):6429.
[56] Baughman R H, Zakhidov A A, Heer W A D. Science, 2002, 297(5582):787.
[57] Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C. Chem. Eng. J., 2015, 266:28.
[58] Duan X G, Ao Z M,Sun H Q, Zhou L, Wang G X, Wang S B. Chem. Commun., 2015, 51(83):15249.
[59] 张凌峰(Zhang L F),胡忠攀(Hu Z P),高泽敏(Gao Z M),刘亚录(Liu Y L),袁忠勇(Yuan Z Y). 化学进展(Progress in Chemistry), 2015, 27(8):1042.
[60] Ballesteros E, Gallego M, Valcárcel M. J. Chromatogr. A, 2000, 869(1/2):101.
[61] Figueiredo J L, Pereira M F R. Catal. Today, 2010, 150(1):2.
[62] Riverautrilla J, Sánchezpolo M, Gómezserrano V, Alvarez P M, Alvimferraz M C, Dias J M. J. Hazard. Mater., 2011, 187(1/3):1.
[63] Puente G D L, Pis J J, Menéndez J A, Grange P. J. Anal. Appl. Pyrol., 1997, 43(2):125.
[64] Huang H H, Lu M C, Chen J N, Lee C T. Chemosphere, 2003, 51(9):935.
[65] Qiao W, Korai Y, Mochida I, Hori Y, Maeda T. Carbon, 2002, 40(3):351.
[66] Lahaye J. Fuel, 1998, 77(6):543.
[67] Wang S G, Li Y H, Gong X Y, Zhao H Z, Luan Z K, Xu C L,Wu D H, Chinese Sci. Bull., 2003, 48(5):441.
[68] Santos V P, Pereira M F R, Faria P C C, Órfão J J M. J. Hazard. Mater., 2009, 162(2/3):736.
[69] Glerup M, Steinmetz J, Samaille D, Stéphan O, Enouz S, Loiseau A, Roth S, Bernier P. Chem. Phys. Lett., 2004, 387(1):193.
[70] Hummelen J C, Knight B, Pavlovich J, González R, Wudl F. Science, 1995, 269(5230):1554.
[71] Qu L T, Du F, Dai L M. Nano Lett., 2008, 8(9):2682.
[72] Chizari K, Deneuve A, Ersen O, Florea I, Liu Y, Edouard D, Janowska I, Begin D, Pham-Huu C. ChemSusChem, 2012, 5(1):102.
[73] Luo J, Peng F, Wang H, Yu H. Catal. Commun., 2013, 39(17):44.
[74] Feng L, Yan Y, Chen Y, Wang L. Energ. Environ. Sci., 2011, 4(5):1892.
[75] Thurakitseree T, Kramberger C, Kumamoto A, Chiashi S, Einarsson E, Maruyama S. ACS Nano, 2013, 7(3):2205.
[76] Mangun C L, Benak K R, Economy J, Foster K L. Carbon, 2001, 39(12):1809.
[77] Yu D S, Nagelli E, Du F, Dai L M. J.Phys.Chem.Lett., 2010, 1(14):2165.
[78] Zhao Y, Yang L J, Chen S, Wang X Z, Ma Y W, Wu Q, Jiang Y F, Qian W J, Hu Z. J. Am. Chem. Soc., 2013, 135(4):1201.
[79] Razmjooei F, Singh K P, Song M Y, Yu J S. Carbon, 2014, 78:257.
[80] Duan X, Ao Z, Sun H, Indrawirawan S, Wang Y, Kang J, Liang F, Zhu Z, Wang S. ACS. Appl. Mater. Inter., 2015, 7(7):4169.
[81] Luo Z Q, Lim S H, Tian Z Q, Shang J Z, Lai L F, Macdonald B, Fu C, Shen Z X, Yu T, Lin J Y. J. Mater. Chem., 2011, 21(22):8038.
[82] Duan X G, Ao Z M, Li D G, Sun H Q, Zhou L, Suvorova A, Saunders M, Wang G X, Wang S B. Carbon, 2016, 103:404.
[83] Kundu S, Xia W, Busser W, Becker M, Schmidt D A, Havenith M, Muhler M. Phys. Chem. Chem. Phys., 2010, 12(17):4351.
[84] Indrawirawan S, Sun H Q, Duan X G, Wang S B. J. Mater. Chem. A, 2015, 3(7):3432.
[85] Sun H Q, Wang Y X, Liu S Z, Ge L, Wang L, Zhu Z H, Wang S B. Chem. Commun., 2013, 49(85):9914.
[86] Duan X, Sun H, Wang Y, Kang J, Wang S. ACS Catal., 2014, 5(2):553.
[87] Duan X G, Indrawirawan S, Sun H Q, Wang S B. Catal. Today, 2015, 249:184.
[88] Zhang L P, Niu J B, Li M T, Xia Z H. J. Phys. Chem. C, 2014, 118(7):3545.
[89] Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z. Angew. Chem., 2011, 123:7270.
[90] Liu H, Sun P, Feng M B, Liu H X, Yang S G, Wang L S, Wang Z Y. Appl. Catal. B:Environ., 2016, 187:1.
[91] Kurita N, Kobayashi K, Kumahora H, Tago K, Ozawa K. Chem. Phys. Lett., 1992, 198(1/2):95.
[92] Glenis S, Labes M M, Nelson A J. J. Appl. Phys., 1997, 81(6):2919.
[93] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(46):11496.
[94] Glendening E D, Landis C R, Weinhold F. WIREs Comput. Mol. Sci., 2012, 2(1):1.
[95] Frank B, Blume R, Rinaldi A, Trunschke A, Schl gl R. Angew. Chem.Int. Ed., 2011, 50(43):10226.
[96] 杨梅梅(Yang M M), 周少奇(Zhou S Q), 刘聃(Liu D), 郑可(Zheng K). 环境科学(Environmental Sciences), 2013, 34(3):962.
[97] 杨世迎(Yang S Y), 邵雪停(Shao X T), 韩强(Han Q), 王平(Wang P),王静(Wang J). 环境化学(Environ. Chem.), 2012, 31(5):692.
[98] Kong X K, Sun Z Y, Chen M, Chen C L, Chen Q W. Energ. Environ. Sci., 2013, 6(6):3260.
[99] Kong X K, Chen C L, Chen Q W. Chem. Soc. Rev., 2014, 43(8):2841.
[100] Czech B, Oleszczuk P, Wi?cek A E, Barczak M. Environ. Sci. Pollut. Res., 2015, 22(24):20198.
[101] Jaramillo J, álvarez P M, Gómez-Serrano V. Appl. Surf. Sci., 2010, 256(17):5232.
[102] Vivo-Vilches J F, Bailón-García E, Pérez-Cadenas A F, Carrasco-Marín F, Maldonado-Hódar F J. Carbon, 2014, 68(3):520.
[103] Boehm H P. Adv. Catal., 1966, 16:179.
[104] Li N, Ma X L, Zha Q F, Kim K S, Chen Y S, Song C S. Carbon, 2011, 49(15):5002.
[105] Rao A M, Eklund P C, Bandow S, Thess A, Smalley R E, Nature, 1997, 388(6639):257.
[106] Duclaux L. Carbon, 2002, 40(10):1751.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.